NASA/TM-1998-208715 # Bi-Level Integrated System Synthesis (BLISS) Jaroslaw Sobieszczanski-Sobieski Langley Research Center, Hampton, Virginia Jeremy S. Agte and Robert R. Sandusky, Jr. The George Washington University Joint Institute for Advancement of Flight Sciences Langley Research Center, Hampton, Virginia #### The NASA STI Program Office . . . in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role. The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types: - TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part or peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations. - TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis. - CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees. - CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA. - SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest. - TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission. Specialized services that help round out the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos. For more information about the NASA STI Program Office, see the following: - Access the NASA STI Program Home Page at http://www.sti.nasa.gov - Email your question via the Internet to help@sti.nasa.gov - Fax your question to the NASA Access Help Desk at (301) 621-0134 - Phone the NASA Access Help Desk at (301) 621-0390 - Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320 ### NASA/TM-1998-208715 ## Bi-Level Integrated System Synthesis (BLISS) Jaroslaw Sobieszczanski-Sobieski Langley Research Center, Hampton, Virginia Jeremy S. Agte and Robert R. Sandusky, Jr. The George Washington University Joint Institute for Advancement of Flight Sciences Langley Research Center, Hampton, Virginia National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 ## Acknowledgments | The authors gratefully acknowledge the contribution Engineous Co. for providing test results for the Air Optimization using a software package called iSIC | rcraft Optimization and the Electronic Package | |--|---| The use of trademarks or names of manufacturers in this re-
official endorsement, either expressed or implied, of such pr
Space Administration. | | | | | | Available from the following: | | | NASA Center for AeroSpace Information (CASI) | National Technical Information Service (NTIS)
5285 Port Royal Road | NASA Center for AeroSpace Information (CASI) 7121 Standard Drive Hanover, MD 21076-1320 (301) 621-0390 National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161-2171 (703) 487-4650 ### **BI-LEVEL INTEGRATED SYSTEM SYNTHESIS (BLISS)** Jaroslaw Sobieszczanski-Sobieski*, Jeremy S. Agte[†], and Robert R. Sandusky, Jr[‡] #### Abstract BLISS is a method for optimization of engineering systems by decomposition. It separates the system level optimization, having a relatively small number of design variables, from the potentially numerous subsystem optimizations that may each have a large number of local design variables. The subsystem optimizations are autonomous and may be conducted concurrently. Subsystem and system optimizations alternate, linked by sensitivity data, producing a design improvement in each iteration. Starting from a best guess initial design, the method improves that design in iterative cycles, each cycle comprised of two steps. In step one, the system level variables are frozen and the improvement is achieved by separate, concurrent, and autonomous optimizations in the local variable subdomains. In step two, further improvement is sought in the space of the system level variables. Optimum sensitivity data link the second step to the first. The method prototype was implemented using MATLAB and iSIGHT programming software and tested on a simplified, conceptual level supersonic business jet design, and a detailed design of an electronic device. Satisfactory convergence and favorable agreement with the benchmark results were observed. Modularity of the method is intended to fit the human organization and map well on the computing technology of concurrent processing. #### 0. Introduction Optimization of complicated engineering systems by decomposition is motivated by the obvious need to dis- * Manager, Computational AeroSciences, and Multidisciplinary Research Coordinator, NASA Langley Research Center, MS 139 Hampton VA 23681, AIAA tribute the work over many people and computers to enable simultaneous, multidisciplinary optimization. It is important to partition the large undertaking into subtasks, each small enough to be easily understood and controlled by people responsible for it. This implies granting people in charge of a subtask a measure of authority and autonomy in the subtask execution, and allowing human intervention in the entire optimization process. Reconciliation of the need for subtask autonomy with the system level challenge of "everything influences everything else" is difficult. Each of the leading MDO methods that have evolved to date (survey papers: Balling and Sobieszczanski-Sobieski, 1996; and Sobieszczanski-Sobieski, J., and Haftka, R. T, 1997) tries to address that difficulty in a different way. In the system optimization based on the Global Sensitivity Equations (GSE) (Sobieszczanski-Sobieski, J. 1990, Olds, J. 1992, Olds, J. 1994), the partitioning applies only in the sensitivity analysis while optimization involves all the design variables simultaneously. The Concurrent SubSpace Optimization method provides for separate optimizations within the modules (Sobieszczanski-Sobieski, J. 1988, Renaud and Gabriele, 1991, 1993, and 1994; Stelmack and S. Batill, 1998) but handles all the design variables simultaneously in the coordination problem. The Collaborative Optimization method (Braun and Kroo, 1996; Sobieski and Kroo, 1998) also enables separate optimizations within the modules, each performed to minimize a difference between the state and design variables and their target values set in a coordination problem. This problem combines the system optimization with the system analysis, therefore its dimensionality may be quite large. Most of the above method implementations had to overcome difficulties with integration of dissimilar codes. This has stimulated use of Neural Nets and Response Surfaces as means by which subdomains in the design space may be explored off-line and still be represented to the entire system. Unfortunately, effectiveness of this approach is limited to approximately 12 to 20 independent variables, hence, it is best suited for the early design phase. Consequently, a clear need remains [†] Graduate Research Scholar Assistant, George Washington University, Joint Institute for Advancement of Flight Sciences, LT, United States Air Force [‡] Professor, George Washington University, Joint Institute for Advancement of Flight Sciences, AIAA Fellow for a method applicable in later design phases when the number of design variables is much larger. Methods that build a path in design space fit that requirement. Ultimately, one needs both domain-exploring methods and path-building methods, enhanced with seamless 'gear-shifting' between the two. Motivated by the above state of affairs, BLISS attacks the problem by performing an explicit system behavior and sensitivity analysis using the GSE, autonomous optimizations within the subsystems performed to minimize each module contribution to the system objective under the local constraints, and a coordination problem that engages only a relatively small number of the design variables that are shared by the modules. Solution of the coordination problem is guided by the derivatives of the behavior and local design variables with respect to the shared design variables. These derivatives may be computed in two different ways, giving rise to two versions of BLISS. In either version, BLISS builds a gradient-guided path, alternating between the set of disjointed, modular design subspaces and the common system-level design space. Each segment of that path results in an improved design so that if one
starts from a feasible state, the feasibility in each modular design subspace is preserved while the system objective is reduced. In case of an infeasible start, the constraint violations are reduced while the increase of the objective is minimized. Because the system analysis is performed at the outset of each segment of the path, the process can be terminated at any time, if the budget and time limitations so require, with the useful information validated by the last system analysis. In addition to enabling complete human control in the subspace optimization, BLISS allows the engineering team to exercise judgment, at any point in the procedure, to intervene before committing to the next successive pass. BLISS has been developed in a prototype form and has been successfully demonstrated on the small-scale test cases reported herein. #### 1. Notation - BB black box, a module, in the mathematical model of a system. - $BBA(Y_{\rm r},\!(Z,\!X_{\rm r}))$ analysis of $BB_{\rm r}$ to compute $Y_{\rm r}$ for given Z and $X_{\rm r}$ - $BBOF_r$ BB Objective Function computed in BB_r $BBOPT_r(X_r, \phi_r, G_r)$ optimization in BB_r defined by eq.(2.1/9) - $BBOSA_r(X_{r,opt},Z,Y_{r,s})$ analysis of BB optimum for - sensitivity to parameters - $BBSA(D(Y_{r},\!(Z,\!X_{r},\!Y_{r,s})) \text{ sensitivity analysis of } BB_{r} \text{ to} \\ compute \text{ its output derivatives w.r.t. } Z,\,X_{r}, \text{ and } Y_{r,s}$ - D(V1,V2) total derivative dV1/dV2 - d(V1,V2) partial derivative $\partial V1/\partial V2$; - D(), and d() dimensionality depends on the dimensionalities of V1 and V2: - V1 and V2 are both scalars, then D and d are scalars - V1 vector, V2 scalar, then D and d are vectors - V1 scalar, V2 vector, then D and d are vectors - V1 vector, V2 vector, then D and R are matrices - $G_{\scriptscriptstyle o}$ vector of constraints active at the constrained minimum, length $NG_{\scriptscriptstyle o}$ - G_r vector of the constraint functions, $g_{r,t}$ local to BB_r , $g_{r,t} \leq 0 \text{ is a satisfied constraint}$ - G_{yz} constraints in a BB that have a stronger depend ence on Y and Z, than on X - GSE Global Sensitivity Equations (Sobieszczanski-Sobieski, 1990); GSE/OS - GSE/Optimized Subsystems. - I identity matrix. - L vector of the Lagrange multipliers corresponding to G_o , length NG_o - LP Linear Programming - NB the number of BBs in the system - NLP NonLinear Programming - opt subscript denotes optimized quantity - P vector of parameters, p_i, kept constant in the process of finding the constrained minimum, length - SA((P,Z,X),Y) system analysis; a computation that outputs Y for a system defined by P, Z, and X - SOF System Objective Function computed in one of the BBs - SOPT(Z, Φ) system objective optimization defined by eq. (2.2.3/1) - SSA(D(Y,(Z,X)) system sensitivity analysis to compute sensitivity of the system response Y w.r.t. Z and X - TOGW take-off gross weight - T superscript denotes transposition. - X_r vector of the design variables $x_{r,j}$, length NX_r , these variables are local to BB_r ; X without subscript a vector of all concatenated X_r , length NX - XL, XU lower and upper bounds on X, side-constraints. - Y_{r} vector of behavior (state) variables output from $BB_{r},$ these are the coupling variables; an element of Y_{r} is denoted $y_{r,i}\,;$ some of $y_{r,i}$ are routed as inputs to other BBs, and may also be routed as output to the outside; the Y_{r} length is $NY_{r};$ Y without subscripts a vector of all concatenated $Y_{r},$ length NY - $Y_{r,s}$ vector of variables input to BB_r from BB_s , these are the coupling variables; an element of $Y_{r,s}$ is denoted $y_{r,s,i}$; note that by this definition $Y_{r,s}$ is a subset of Y_r , vector length $NY_{r,s}$ - Z vector of the design variables z_k that are shared by two or more BBs, these are the system-level variables; length NZ - 0 subscript denotes the present state from which to extrapolate, or the optimal state. - ZL, ZU lower and upper bounds on Z, sideconstraints Δ - increment ΔZL , ΔZU - move limits - ϕ_r the local objective function in BB_r - Φ the system objective function equated to one, particular $y_{l,i}$ #### 2. The Algorithm In this section, the symbols defined in Notation are used in a shorthand manner without repeating their definitions. Figure 1: System of Coupled BBs The algorithm is introduced using an example of a generic system of three BBs, as shown in Figure 1. Three is a number small enough for easy conceptual grasp and compact mathematics, yet large enough to unfold patterns that readily generalize to larger NB. Even though the system in Figure 1 is generic, it may be useful to bear a specific example in mind. Let it be an aircraft so that: BB1 - performance analysis BB2 - aerodynamics BB3 - structures $$\begin{split} \Phi &\text{-maximum range for given mission characteristics} \\ Y_{1,2} &\text{- includes the aerodynamic drag; } Y_{1,3} &\text{- includes the structural weight; } Y_{2,1} &\text{- includes Mach number;} \\ Y_{3,1} &\text{- includes TOGW; } Y_{2,3} &\text{- includes the structural deformations that alter the aerodynamic shape; } Y_{3,2} &\text{- includes the aerodynamic loads} \\ g_{1,t} &\text{- a noise abatement constraint on the mission pro-} \end{split}$$ file; $g_{2,t}$ - limit of the chordwise pressure gradient; $g_{3,t}$ - allowable stress - x_{1,j} cruise altitude; x_{2,j} leading edge radius; x_{3,j} sheet metal thickness in the wing skin panel No. 138 - z_1 wing sweep angle; z_2 wing aspect ratio; z_3 wing airfoil maximum depth-to-chord ratio; z_4 location of the engine on the wing The system in Figure 1 is characterized by BB level design variables X, and by system-level design variables Z. As a reference, if an all-in-one optimization were performed, observing the system at a single level and making no distinction between the treatment of X variables and the treatment of Z variables, the problem could be stated Given: X and Z (1) Find: ΔX and ΔZ Minimize: $\Phi(X,Z,Y(X,Z))$ Satisfy: G(X,Z,Y(X,Z)) Since BLISS approaches this optimization by means of a system decomposition, the algorithm depends on the availability of the derivatives of output with respect to input for each BB. That assumes the differentiability of the BB internal relationships to at least the first order. It is immaterial how the derivatives are computed, finite differencing may always be used, but it is expected that in most cases one will utilize one of the more efficient analytical techniques (Adelman and Haftka, 1993). The algorithm comprises the system analysis and sensitivity analysis, local optimizations inside of the BBs (that includes the BB-internal analyses), and the system optimization. We will not elaborate on SA beyond pointing out that it is highly problem-dependent, and likely to be iterative if there are any non-linearities in the BB analyses. Each pass through the BLISS procedure improves the design in two steps: first by concurrent optimizations of the BBs using the design variables X and holding Z constant; and next, by means of a system-level optimization that utilizes variables Z. We begin with the BB-level optimization. ## <u>2.1. BB-level (discipline or subsystem)</u> optimizations. The basis of the algorithm is the formulation of an objective function unique for each BB such that mini- mization of that function in each BB results in the minimization of the system objective function. To introduce that formulation let us begin with the system objective function (SOF). The SOF is computed as a single output item in one of the BBs; without loss of generality we assume that it is BB_1 so that $$\Phi = \mathbf{y}_{1,i} \tag{1}$$ is one of the elements of Y_1 . Total derivatives of Y w.r.t. $x_{r,j}$, $D(Y, x_{r,j})$, are computed according to Sobieszczanski-Sobieski, 1990, by solving a set of simultaneous, algebraic equations known as Global Sensitivity Equations, GSE, (see Appendix, Section 1, for details) for a particular $x_{r,j}$ [A] $$\{D(Y,x_{r,j})\} = \{d(Y,x_{r,j})\}\$$ (2) where A is a square matrix, NYxNY, composed of submatrices forming this pattern $$\begin{bmatrix} I & A_{1,2} & A_{1,3} \\ A_{2,1} & I & A_{2,3} \\ A_{3,1} & A_{3,2} & I \end{bmatrix}$$ (3) where I stands for identity matrix, NY_rxNY_r, and A_{r,s} are matrices of the derivatives that capture sensitivity of the BB_r output to input. For example $$\begin{aligned} A_{2,3} &= -[d(Y_2,Y_3)], \ NY_2xNY_3 \\ A_{3,2} &= -[d(Y_3,Y_2)], \ NY_3xNY_2 \end{aligned} \tag{4}$$ One should note that eq. 2 can be efficiently solved for many different $x_{r,j}$ using techniques available for linear equations with many right-hand sides. Having $D(Y,x_{r,j})$ computed from eq. 2 for all $x_{r,j}$, we can express Φ as a function of X by the linear part of the Taylor series $$\begin{split} \Phi &= y_{1,i} = (y_{1,i})_0 + D(y_{1,i}, X_1)^T \! \Delta X_1 + \\ & D(y_{1,i}, X_2)^T \! \Delta X_2 + D(y_{1,i}, X_3)^T \! \Delta X_3 \end{split} \tag{5}$$ where D-terms are vectors of length NX_r. We see from eq. 5 that $$\begin{split} \Delta \Phi &= D(y_{1,i}, X_1)^T \! \Delta X_1 + D(y_{1,i}, X_2)^T \! \Delta X_2 + \\ & D(y_{1,i}, X_3)^T \! \Delta X_3 \end{split} \tag{6}$$ the three terms showing explicitly the contributions to $\Delta\Phi$ of the local design variables from each of the three BBs. It is apparent that to minimize $\Delta\Phi$ we need to charge each BB with the task of minimizing its own objective. Using BB₂ as an example, objective ϕ_2 is $$\phi_2 = D(y_{1,i}, X_2)^T \Delta X_{2,j}, j = 1 ---> NX_2$$ (7) The above equations state mathematically the fundamentally important concept that in a system optimization the contributing disciplines should not optimize themselves for a traditional, discipline-specific objective such as the minimum aerodynamic drag or minimum structural weight. They should optimize themselves for a
"synthetic" objective function that measures the influence of the $BB_{\rm r}$ design variables $X_{\rm r}$ on the entire system objective function. Another way to look at it is to observe that, in long-hand $$\begin{split} \varphi_2 &= D(y_{1,i}, \ x_{2,1})^T \Delta X_{2,1} \ + D(y_{1,i}, \ x_{2,2})^T \Delta X_{2,2} + ... \\ &+ D(y_{1,i}, \ x_{2,j})^T \Delta X_{2,j} + ..., \ j = 1 --- > NX_2 \end{split} \tag{8}$$ so it may be regarded as a composite objective function commonly used in multiobjective optimization. One may say, therefore, that in a coupled system the local disciplinary or subsystem optimizations should be multiobjective with a composite objective function. The composite objective should be a sum of the local design variables weighted by their influence on the single objective of the whole system. It should be emphasized that this is true also in that particular BB_r where Φ is being computed. In the aircraft example it is $\Phi=y_{l,i}$ in BB_l according to eq. 1. However, the BB_l optimization objective is not $\varphi_l=y_{l,i}.$ Instead, it is φ_l from an equation analogous to eq.8. The local optimization problem may be stated formally for BB₂ Given: $$X_2$$, Z, and $Y_{2,1}$, $Y_{2,3}$ (9) Find: ΔX_2 ; length NX_2 Minimize: $\phi_2 = D(y_{1i}, X_2)^T \Delta X_2$ Satisfy: $G_2 \le 0$, including side-constraints Incidentally, we adhere to the convention which calls for minimization of the objective function. If the application requires that function be maximized, as it does in the example of aircraft range, we convert the objective, e.g., $\Phi = -$ (range). The optimization problem for BB_1 , and BB_3 are analogous. All three problems being independent of each other may be solved concurrently. This is an opportunity for concurrent engineering and parallel processing. By solving eq. 9 for all three BBs, we have improvedthe system because, according to eq. 5 and 6, we have reduced Φ by $\Delta\Phi$, while satisfying constraints in each BB #### 2.2. System-level optimization. So far we have improved the system by manipulating X in the presence of a constant Z. We can score further improvement by exploiting Zs as variables. To do so we need to know how Z influences $\Phi = y_{1,i}$. That is, we need $D(y_{1,i},Z)$. At this point, the BLISS algorithm forks into two alternatives, termed BLISS/A and BLISS/B. #### 2.2.1. BLISS/A This version of BLISS computes the derivatives of Y with respect to Z by modified GSE, eq.(2.1/2) (equations from other sections are cited in (), the section number given before the /). The GSE modification accounts for the fact that optimization of a BB turns its X into a function of Y and Z that enter that particular BB as parameters. The modification leads to a new generalization of GSE that takes the following form termed GSE/OS for GSE/Optimized Subsystems. The GSE/OS yields a vector $D(Y,z_k)$ and $D(X,z_k)$, and because Φ is one of the elements of Y, $\Phi = y_{l,i}$, we get the desired derivative $D(\Phi,z_k)$. Derivation and details of the GSE/OS structure, including the definition of the matrix M, are in Section 2 of the Appendix. At this point it will suffice to say that the matrix of coefficients in GSE/OS is populated with $d(Y_r,Y_s)$, $d(Y_r,X_r)$, and $d(X_r,Y_s)$. These terms and the RHS terms of $d(Y,z_k)$ and $d(X,z_k)$ are obtained from the following sources • $$d(Y_r, Y_s)$$, $d(Y_r, X_r)$, and $d(Y, z_k)$ ----- from BBSA • $d(X_r, z_k)$, $d(X_r, Y_s)$ ----- from BBOSA The terms $d(X,z_k)$ and $d(X_r,Y_s)$ are the derivatives of optimum with respect to parameters that, in principle, may be obtained by differentiation of the Kuhn-Tucker conditions, e.g., an algorithm described in Sobieszczanski-Sobieski et al, 1982. That approach, however, requires second order derivatives of behavior, too costly in most large-scale applications. Therefore, an approximate algorithm adapted from Vanderplaats and Cai, 1986, is given in Section 3 of the Appendix. In that algorithm, parameters are perturbed by a small increment, one at a time, and the BB optimization is repeated by Linear Programming (LP) starting from the optimal point. Derivatives of optimal X and Y with respect to parameters are then computed by finite differences. #### 2.2.2. BLISS/B This version of BLISS avoids calculation of $d(X_r, z_k)$ and $d(X_r, Y_s)$ altogether by using an algorithm that yields $D(\Phi,P)$, where P includes both Y and Z. The algorithm, described in literature (e.g., Barthelemy and Sobieszczanski-Sobieski, 1983) is based on the well-known notion that the Lagrange multipliers may be interpreted as the prices, stated in the units of Φ , for the constraint changes caused by incrementing p_i . For a general case of the objective F=F(P) and $G_o=G_o(P)$, the algorithm gives the following formula for $D(F,P)_o$ $$D(F,P)_o = d(F,P) + L^T d(G_o,P)$$ To use the above in BLISS, consider that in P we have an independent Z but Y=Y(Z) so that the terms d() require chain-differentiation. Hence, the above general formula tranforms to $$\begin{split} D(y_{1,i},\!Z)_o{}^T &= (L^T d(G_o,\!Z))_1 + (L^T d(G_o,\!Z))_2 + \\ &\quad (L^T \! d(G_o,\!Z))_3 + [(L^T d(G_o,\!Y))_1 \! + (L^T d(G_o,\!Y))_2 \\ &\quad + (L^T \! d(G_o,\!Y))_3 \,] (D(Y,\!Z)) + D(y_{1,i},\!Z)^T \end{split} \tag{1}$$ where L is the vector of Lagrange multipliers and () $_1$, () $_2$, and () $_3$ identify the BBs 1, 2, and 3. The terms in the above equation originate from the following sources: - \bullet $d(G_o,Z)$ and $d(G_o,Y)$ BBSA performed on isolated BB_r - L obtained for BB_r at the end of BBOPT - D(Y,Z) from GSE in SSA - $D(y_{1,i},Z)$ the column corresponding to $y_{1,i}$ in the above matrix D(Y,Z) BLISS/B is substantially simpler in implementation than BLISS/A and it eliminates the computational cost of one LP per parameter Y and Z. Optimizers that yield L as a by-product of optimization are available for use in BBOPT, or L may be obtained as described in Haftka and Gurdal, 1992. #### 2.2.3. Optimization in the Z-space. Once $D(y_{1,i},Z)$ have been computed from either eq.(2.2.1/1) or as $D(y_{1,i},Z)_o$ from eq. (2.2.2/1), we can further improve the system objective by executing the following optimization, using any suitable optimizer Given: $$Z \text{ and } \Phi_0$$ (1) Find: ΔZ Minimize: $\Phi = \Phi_0 + D(y_{1,i},Z)^T \Delta Z$ Satisfy: $ZL \le Z + \Delta Z \le ZU$; $\Delta ZL \le \Delta Z \le \Delta ZU$ Where Φ_0 is inherited from the previous cycle SA for X and Z (initialized if it is the first cycle). It is recommended to handle the Z constraints by means of a trust-region technique, e.g., Alexandrov 1996. In the above, term $D(y_{1,i}, Z)$ is a constrained derivative that protects $G_o = 0$ in all BBs. Therefore, the optimization is unconstrained except of the side-constraints and move limits. However, some BBs may have constraints that depend on Z and Y more strongly than on X (in the extreme case some constraints may not be functions of X at all, only of Y and Z). Such constraints, denoted G_{yz} , may be difficult (or impossible) to satisfy by manipulating only X in BBOPT. To satisfy them, one must add to the Z-space optimization in eq.1 their extrapolated values $$G_{yz}^{T} = G_{yz,0}^{T} + (d(G_{yz}, Z) + d(G_{yz}, Y)D(Y, Z))^{T}\Delta Z \le 0$$ (2) where $d(G_{yz},Z)$, and $d(G_{yz},Y)$ are obtained from BBSA. In this instance, the Z-space optimization becomes a constrained one. #### 3. Iterative Procedure The two operations, the local optimizations in the BBs and the system-level optimization, described in Sec. 2, result in a new system, altered because of the increments on X and Z. This means that inputs to and outputs from SA, BBA, BBSA, SSA, BBOPT, BBOSA (BLISS/A), and SOPT all need to be updated, and the sequence of these operations repeated with the new values of all quantities involved, including new values of all the derivatives because they would change if there were any nonlinearities in the system (as there usually are). In a large-scale application where execution of each BLISS cycle may require significant resources and time, the engineering team may wish to review the results before committing to the next cycle. That intervention may entail a problem reformulation, such as overriding the variable values, deleting and adding variables, constraints, and even BBs. Figure 2: BLISS/B Flowchart Thus, the following procedure emerges, illustrated also by a flowchart in Figure 2 for BLISS/B with the BLISS/A operations, if different, noted in []. - 0. Initialize X & Z. - 1. SA to get Ys and Gs; this includes BBAs for all BBs. - 2. Examine TERMINATION CRITERIA, exercise judgment to override the results, modify the problem formulation, and CONTINUE or STOP. - 3. BBSA to obtain d(Y,X), $d(Y_{r,s},Y_s)$, d(G,Z), and d(G,Y), and SSA, eq. (2.1/2), to get D(Y,X) [and D(Y,Z)]; Here is an opportunity for concurrent processing. - 4. BBOPT for all BBs, eq. (2.1/9) using ϕ formulated individually for each BB (eq. (2.1/6, 7)), get ϕ_{opt} and ΔX_{opt} ; obtain L for G_o [skip L]. Here is an opportunity for concurrent processing. - 5. Obtain $D(\Phi,Z)$ as in eq. (2.2.2/1). [Execute BBOSA to obtain d(X,Z) and d(X,Y), and form and solve GSE/OS (Appendix, Section 3) to generate D(Y,Z)]. Here is an opportunity for concurrent processing. - 6. SOPT to get ΔZ_{opt} by eq. (2.2.3/1 and 2) herein. - 7. Update all quantities, and repeat from 1. $$X = X_0 \ + \Delta X_{opt}; \ Z = Z + \Delta Z_{opt}$$ Note: Termination is placed as #2 after SA to ensure that the full analysis results document the final system design, as opposed to having it documented only by the extrapolated quantities. Also, at this point the engineering team may decide whether to intervene by modifying the variable values, and adding or deleting the design variables and constraints. When started from a feasible design, the procedure will
result in an improved system, while the local constraints are kept satisfied within extrapolation accuracy, even when terminated before convergence. Figure 3: Polynomial Representation of Wing Twist In case of an infeasible design start, the improvement will be in the sense of reductions in the constraint violations, while the objective may exhibit an increase, at least initially. The procedure achieves the improvement by virtue of optimization alternating between the domain of NB X-spaces (Step #4) and the single Z-space (Step #6). Caveat: because in BLISS/B the extrapolation of Φ in eq. (2.2.3/1) is based on the Lagrange multipliers in eq. (2.2.2/1), its accuracy depends on the BBOPT yielding a feasible solution, and on the active constraints G_o remaining active for updated Z. If some constraints leave the active set Go, or new constraints enter, a discontinuous change of the extrapolation error may result. For example, consider the wing aspect ratio AR as a Z-variable and suppose that for AR = 3 it is the stress due to the wing bending that is one of the active constraints in the structures BB. If optimization in the Z-space took the design to AR = 4, the next cycle may reveal that the stress constraint is satisfied but a flutter constraint becomes critical. Past experience (Sobieszczanski-Sobieski, 1983) shows that this discontinuity is likely to slow, but not to prevent, the process convergence, and may be controlled by adjusting the move limits. Figure 4: Data Dependencies for Range Optimization #### 4. Numerical Tests and Examples BLISS/A was tested on a sample of test problems from Hock and Schittkowski, 1981, and on a design of an electronic package. BLISS/B was exercised on the latter, and also on a very simplified aircraft configuration problem. Both versions of BLISS performed as intended in all of the tests. The sole purpose of these initial numerical experiments was to test and to demonstrate the BLISS procedure logic and data flow, therefore, the BBs were merely surrogates of the numerical processes that need to be used in real applications. #### 4.1. Aircraft Optimization The aircraft test was an optimum cruise segment of a supersonic business jet based on the 1995-96 AIAA Student Competition. This problem was selected because of its available data base and the availability of the black boxes written in Visual Basic in form of Excel spreadsheets. The supersonic business jet was modeled as a coupled system of structures (BB₁), aerodynamics (BB₂), propulsion (BB₃), and aircraft range (BB₄). All the disciplines were represented by modules comprising an analysis level typical for an early conceptual design stage. | var\cycle* | 1 | 2 | 3 | 4 | 5 | |-------------------------------------|---------|---------|---------|---------|---------| | Range (SSA) | 535.79 | 1581.67 | 3425.35 | 3961.41 | 3963.98 | | Extpl. Error | -535.79 | -536.67 | -431.63 | -56.26 | -3.43 | | BB1 Extpl. | 17.17 | -0.16 | -3.26 | -0.86 | 0.00 | | BB2 Extpl. | 16.85 | 0.00 | 0.00 | 0.00 | 0.00 | | BB3 Extpl. | 26.00 | 110.92 | -76.84 | 0.00 | 0.00 | | X Extpl. | 60.02 | 110.75 | -80.10 | -0.86 | 0.00 | | Z Extpl. | 449.19 | 1301.30 | 559.90 | 0.00 | 0.00 | | Range (Extpl.) | 1045.00 | 2993.72 | 3905.15 | 3960.55 | 3963.98 | | λ | 0.25 | 0.14951 | 0.17476 | 0.25775 | 0.38757 | | x | 1 | 0.75 | 0.75 | 0.75 | 0.75 | | C _f | 1 | 0.75 | 0.75 | 0.75 | 0.75 | | Т | 0.5 | 0.1676 | 0.20703 | 0.15624 | 0.15624 | | t/c | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 | | h(ft) | 45000 | 54000 | 60000 | 60000 | 60000 | | M | 1.6 | 1.4 | 1.4 | 1.4 | 1.4 | | AR | 5.5 | 4.4 | 3.3 | 2.5 | 2.5 | | Λ(°) | 55 | 66 | 70 | 70 | 70 | | S _{ref} (ft ²) | 1000 | 1200 | 1400 | 1500 | 1500 | *One cycle is one pass through the BLISS procedure Table 1: A/C Results for 20% Move Limit The aircraft optimization was a maximization of therange computed through the Breguet range equation. For testing purposes, additional design and state variables were introduced in BBs 1 through 3, and functional relationships not present in the original BBs were supplied to reflect what is commonly known about the typical functions involved in design. For example, stress is expected to fall as a reciprocal of the increase of the skin thickness in a wing box. Such relationships were represented by polynomial functions. One plot of such a function is shown in Figure 3, portraying the wing twist as a function of the wing box cross-sectional dimensions scale factor and the wing lift. Section 4 of the Appendix defines the BBs in this ex ample by their input and output variables, and by the functions that link output to input. Table A1 also identifies local constraints and side constraints. Note that BB₂ contains a constraint that does not depend on its X or Y input, thus the Z-space optimization is a constrained one, per eq. (2.2.3/1 & 2). Side constraints on Z were judiciously selected to guard against conditions not accounted for in the BBAs. For example, the lower bound of 2.5 on aspect ratio stemmed from the subsonic performance considerations. | num \ den | λ | х | C _f | T | t/c | |---|---|---|---|---|---| | W _T | 0.01146 | 1.71536 | 0.01981 | -0.15744 | 0.12714 | | W _F | 0 | 0 | 0 | 0 | 0.72626 | | Θ | -0.03342 | 0.19971 | 3.31E-15 | -1.73E-14 | -2.10E-14 | | L | 0.01146 | 1.71536 | 0.01981 | -0.15744 | 0.12714 | | D | -4.19E-05 | 0.00581 | 0.12457 | -0.00049 | 0.68108 | | L/D | 0.0115 | 1.7095 | -0.1046 | -0.15694 | -0.54935 | | SFC | 1.98E-20 | -5.07E-18 | -2.70E-17 | 0.08544 | 0 | | W _E | -4.40E-05 | 0.0061 | 0.13083 | -1.03986 | 0.71531 | | ESF | -4.19E-05 | 0.00581 | 0.12457 | -0.99059 | 0.68108 | | R | -0.00077 | -0.12692 | -0.12581 | -0.07299 | 0.10115 | | | | | | | | | num \ den | h | М | AR | Sweep | S_{ref} | | num \ den | h
-0.33931 | M
0.31958 | AR
0.08208 | Sweep 0.2537 | S _{ref} 0.55182 | | | | | | | | | W _T | -0.33931 | 0.31958 | 0.08208 | 0.2537 | 0.55182 | | W _T | -0.33931 | 0.31958 | 0.08208 | 0.2537 | 0.55182
1.09211 | | W _τ W _F Θ | -0.33931
0
-1.93E-13 | 0.31958
0
-6.15E-14 | 0.08208
-0.36043
-0.10766 | 0.2537
0
3.77E-14 | 0.55182
1.09211
-0.10766 | | W _τ
W _F
Θ | -0.33931
0
-1.93E-13
-0.33931 | 0.31958
0
-6.15E-14
0.31958 | 0.08208
-0.36043
-0.10766
0.08208 | 0.2537
0
3.77E-14
0.2537 | 0.55182
1.09211
-0.10766
0.55182 | | W _τ
W _F
Θ
L | -0.33931
0
-1.93E-13
-0.33931
-2.1339 | 0.31958
0
-6.15E-14
0.31958
2.00984 | 0.08208
-0.36043
-0.10766
0.08208
3.37E-06 | 0.2537
0
3.77E-14
0.2537
-0.83983 | 0.55182
1.09211
-0.10766
0.55182
0.99838 | | W _T W _F ⊖ L D L/D | -0.33931
0
-1.93E-13
-0.33931
-2.1339
1.84108 | 0.31958
0
-6.15E-14
0.31958
2.00984
-1.6507 | 0.08208
-0.36043
-0.10766
0.08208
3.37E-06
0.08207 | 0.2537
0
3.77E-14
0.2537
-0.83983
1.10064 | 0.55182
1.09211
-0.10766
0.55182
0.99838 | | W _T W _F Θ L D L/D SFC | -0.33931
0
-1.93E-13
-0.33931
-2.1339
1.84108
0.12946 | 0.31958
0
-6.15E-14
0.31958
2.00984
-1.6507
0.05555 | 0.08208
-0.36043
-0.10766
0.08208
3.37E-06
0.08207
2.31E-17 | 0.2537
0
3.77E-14
0.2537
-0.83983
1.10064
-1.86E-16 | 0.55182
1.09211
-0.10766
0.55182
0.99838
-0.43675
0 | Table 2: Normalized Y Derivatives w.r.t. X and Z The BBs are coupled by the output-to-input data transfers (design structure matrix) depicted in Figure 4. Note that BB₄ is an analysis-only module and does not feedback any data to other BBs. Figure 5: Range and Extrapolation Error Histogram This test was conducted entirely using MATLAB 5 and its Optimization Toolbox. The entire MATLAB code listing for the aircraft range model may be found in Section 5 of the Appendix. To establish a benchmark, the system was first optimized using an all-in-one approach in which the MATLAB optimizer was coupled directly to SA and saw no distinction between the X and Z variables. Next, the test case was executed using BLISS/B, starting at different infeasible initial points chosen by varying the six design variables that are not arguments in the polynomial functions. The choice of initial values for variables that are arguments of the polynomial functions was limited due to the nature of the polynomial formulation. This limitation is not a characteristic of the BLISS method itself, as the polynomial functions would not be required in a large scale optimization problem. With the move limits ranging from 10 to 70 %, the procedure convergence was satisfactory through the move limits of 60% for all initial points tested. However, in nearly all cases, no additional improvement in convergence rate was recorded for move limits greater than 20%. For instance, the objective function was advanced to within 1% of the benchmark in 5 passes for move limits 20 and 30%. Onset of an erratic behavior was observed with move limits increased past 60%, the procedure converged or diverged dependent on the starting point. Figure 6: Range Sensitivities (1st cycle) Table 1 displays a sample of typical results for the move limits value of 20%. It shows that the initial design range was extremely poor, only 536 nm. BLISS/B improvements advanced the range to 3964 nm. The range converged monotonically, although in some cases small amplitude oscillations were observed. Comparison of the extrapolated and actual values of the objective and constraints shows
reasonable accuracy and conservatism of the extrapolations. The optimal values of the design variables reflect numerous tradeoffs typical for aircraft design. For instance, optimal t/c resulted, in part, from a trade-off between the wave drag and structural weight. Table 2 shows normalized (logarithmic) derivatives of all Ys, including the range, w.r.t. all the X and Z variables, sampled in Cycle 1 to illustrate sensitivity of the system solution to design variables. Figure 5 illustrates the range histogram, and depicts the extrapolation error as being effectively controlled by the move limits. Range sensitivities to X and Z variables are shown in Figure 6. As expected, altitude and Mach number have the largest effect on the objective function, while taper ratio has the smallest. Figure 7: BB and System Contributions to Range Figure 7 shows the individual BB and system contributions to the range objective in each cycle. Here it is observed that, in this particular case, the contribution of system level variables is significantly larger than that of the local variables in the extrapolation of range. This test case was also implemented in a software package for system analysis and optimization called iSIGHT (iSIGHT, 1998). The iSIGHT and MATLAB results cross-check was completely satisfactory. #### 4.2 Electronic Package optimization The electronic packaging was introduced as an MDO problem in Renaud, 1993. Its electrical and thermal subsystems are coupled because component resistance is influenced by operating temperatures and the temperatures depend on resistance. The objective of the problem is to maximize the watt density for the electronic package subject to constraints. The constraints require the operation temperatures for the resistors to be below a threshold temperature and the current through the two resistors to be equal. The system diagram in Figure 8 shows the data dependencies for two BBs, representing electrical resistance analysis and thermal analysis. As Figure 8 indicates, there are no "natural" Z's in this case. Therefore, Z's were created as targets imposed on each of the Y's and the BBOPT's were required to match the Y values to those Z targets (similar as it is done in the Collaborative Optimization method). Details of the electronic packaging problem may be found in Padula, 1996. Figure 8: Electronic Packaging Data Dependencies This test case was implemented in iSIGHT using BLISS/A and B. A benchmark result was obtained by executing an all-in-one optimization from various starting points ("A-in-O" column). BLISS/A and B were started from the same points. Table 4 displays the benchmark and the BLISS/A and B results as showing a good agreement. Table 4 also indicates a comparison of the computational labor (the "Work" column) measured by the number of BB evaluations necessary to converge the fixed-point iterations in BBAs and in SA, all repeated as needed to compute derivatives by finite-differences in a gradient-guided optimization. As Table 4 shows, the BLISS/B computational labor was substantially lower than the benchmark in all cases. | | | Initial Design | Init. Des. Max | Final Design | Fin. Des. Max | | |---------|------|----------------|----------------|--------------|---------------|------| | Method | Case | Objective | Constr. Viol. | Objective | Constr. Viol. | Work | | A-in-O | 1 | 7.79440E+01 | 2.16630E-08 | 6.39720E+05 | 1.22E-03 | 498 | | | 2 | 6.83630E+03 | -2.89560E-01 | 6.39720E+05 | 1.22E-03 | 264 | | | 3 | 1.51110E+03 | -4.29240E-02 | 6.36540E+05 | 1.45E-03 | 264 | | | 4 | 1.46070E+01 | -1.02490E-03 | 6.36940E+05 | 1.42E-03 | 175 | | BLISS/A | 1 | 7.79440E+01 | 2.16630E-08 | 6.39700E+05 | 1.20E-03 | 436 | | | 2 | 6.83630E+03 | -2.89560E-01 | 6.39050E+05 | 1.18E-03 | 508 | | | 3 | 1.51110E+03 | -4.29240E-02 | 6.39050E+05 | -4.89E-04 | 174 | | | 4 | 1.46070E+01 | -1.02490E-03 | 6.39290E+05 | 3.70E-04 | 313 | | BLISS/B | 1 | 7.79440E+01 | 2.16630E-08 | 6.39720E+05 | 1.22E-03 | 365 | | | 2 | 6.83630E+03 | -2.89560E-01 | 6.39720E+05 | 1.22E-03 | 207 | | | 3 | 1.51110E+03 | -4.29240E-02 | 6.39720E+05 | 1.22E-03 | 114 | | | 4 | 1.46070E+01 | -1.02490E-03 | 6.39720E+05 | 1.22E-03 | 105 | Table 4: Electronic Packaging Data #### 5. BLISS Status, Assessment, and Concluding Remarks A method for engineering system optimization was developed to decompose the problem into a set of local optimizations (large number of detailed design variables) and a system-level optimization (small number of global design variables). Optimum sensitivity data link the subsystem and system level optimizations. There are two variants of the method, BLISS/A and BLISS/B, that differ by the details of that linkage. In the paper, the method algorithm was laid out in detail for a system of three subdomains (modules). Its generalization to NB subdomains is straightforward. The same algorithm may be used to decompose any of the local optimizations, hence optimization may be conducted at more than two levels. MATLAB and iSIGHT programming languages were used to implement and test the method prototype on a simplified, conceptual level supersonic business jet design, and a detailed design of an electronic device. Dimensionality and complexity of the preliminary test cases was intentionally kept very low for an expeditious assessment of the method potential before more resources are invested in further development. Favorable agreement with the benchmark results and a satisfactory convergence observed in the above tests provided motivation for such development and future testing in larger applications. Assessment of BLISS at the above development status is as follows. BLISS relies on linearization of a generally nonlinear optimization, therefore its effectiveness depends on the degree of nonlinearity. As any gradient-guided method, it guarantees a cycle-to-cycle improvement, but if the problem is non-convex, its convergence to the global optimum depends on the starting point and may strongly depend on the move limits. In this regard, BLISS's strong points are in the procedure being open to human intervention between the cycles and in the autonomy of the subdomain optimizations in local variables. These optimizations may be conducted by any means deemed to be most suitable by disciplinary experts, hence non-convexity, and strong nonlinearities in terms of the local variables often encountered in subdomains, e.g., the local buckling in thin-walled structures, are isolated and prevented from slowing down the system-level optimization convergence. On the other hand, the optimization robustness may be adversely affected by the local constraints leaving and entering the active constraint set. Effect of the above on BLISS/A is much less than on BLISS/B. This is probably the only reason to continue the development of BLISS/A alongside with BLISS/B, even though BLISS/B has a distinct advantage in simplicity and a much lower computational cost. Once there is more information on the relative merits and demerits of both variants, the better variant may be selected. The demand BLISS puts on the computer storage is the same the subdomains would require for their own, stand-alone optimizations, with exception of the generation and solution of the Global Sensitivity Equations. If there is a pair of BBs that exchange large number of the $y_{r,s,i}$ - quantities, dimensionality of the corresponding matrices that store the derivatives, and computational cost of these derivatives needed to form GSE, may become prohibitive. Some relief may be provided here by application of condensation techniques and by deleting from GSE those derivative matrices that are known to have negligible effect on the system behavior. The principal advantage of BLISS appears to lie in its separating overall system design considerations from the considerations of the detail. This makes the resulting mapping of its algorithm fit well on diverse, and potentially dispersed, human organizations. This advantage remains to be demonstrated in further development toward large-scale, complex applications. #### 6. References Adelman, H. M.; and Haftka, R. T.: "Sensitivity Analysis of Discrete Systems," In *Structural Optimization: Status and Promise*, Kamat, M. P., ed., AIAA, Washington, D.C., 1993. AIAA/UTC/Pratt & Whitney Undergraduate Individual Aircraft Design Competition, "Engine Data Package fo the Supersonic Cruise Business Jet RFP." 1995/1996. Alexandrov, N.: "Robustness Properties of a Trust Region Framework for Managing Approximations in Engineering Optimization", Proceedings of the 6th AIAA/NASA/USAF Multidisciplinary Analysis and Optimization Symposium, AIAA-96-4102, pp.1056-1059, Bellevue, WA, Sept. 4-6, 1996. Balling, R.J.; and Sobieszczanski-Sobieski, J.: "Optimization of Coupled Systems: A Critical Overview of Approaches," AIAA J., Vol. 34, No. 1, pp.6-17, Jan. 1996. Barthelemy, J.-F; and Sobieszczanski- Sobieski, J.: "Optimum Sensitivity Derivatives of Objective Functions in Nonlinear Programming," *AIAA Journal*, Vol. 21, No. 6, pp. 913–915, June 1983. Braun, R.D.; and Kroo, I.M.: "Development and Application of the Collaborative Optimization Architecture in A Multidisciplinary Design Environment," In SIAM J., Optimization 1996; Alexandrov, N., and Hussaini, M. Y., (eds.). Hock, W.; Schittkowski, K.: "Test Examples for Non-linear Programming Codes," Lecture Notes in Economics and Mathematical Systems (editors: Beckmann and Kunzi), 1981. iSIGHT Designers and Developers Manual, version 3.1, Engineous Software Inc., Morrisville, North Carolina, 1998. Haftka, R. T.; and Gurdal, Z.: "Elements of Structural Optimization," p.172; Kluwer Publishing, 1992. MATLAB manual, the MathWorks, Inc., July 1993, version 5.0, 1997, and MATLAB Optimization Toolbox, User's Guide, 1996. Olds, J.: "The suitability of selected multidisciplinary design and optimization techniques to conceptual aerospace vehicle design," Proc. 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary
Analysis and Optimization (held in Cleveland, OH). AIAA Paper No. 92-4791. 1992. Olds, J.: "System sensitivity analysis applied to the conceptual design of a dual-fuel rocket SSTO," Proc. 5th AIAA/NASA/USAF/ISSMO Symp. on Multidisciplinary Analysis and Optimization (held in Panama City Beach, FL). AIAA Paper No. 94-4339. 1994. Padula, S. L., Alexandrov, N., and Green, L. L.: "MDO Test Suite at NASA Langley Research Center." AIAA-96-4028. 1996. http://fmad-www.larc.nasa.gov/mdob/MDOB/index.html Renaud, J. E.; Gabriele, G. A.: "Improved coordination in non-hierarchic system optimization" AIAA J. 31, 2367-2373. 1993. Renaud, J. E.; Gabriele, G. A.: "Approximation in non-hierarchic system optimization" AIAA J. 32, 198-205. 1994. Renaud, J. E.; Gabriele, G. A.: "Sequential global approximation in non-hierarchic system decomposition and optimization," In: Gabriele, G. (ed.) Advances in Design Automation and Design Optimization, 19th Design Automation Conf. (held in Miami, FL), ASME Publication DE-Vol. 32-1, pp. 191-200.; 1991. Renaud, J.E.: An Optimization Strategy for Multidisciplinary Systems Design, International Conference on Engineering Design, August 1993. Sobieszczanski-Sobieski, J.; Barthelemy, J.-F. M.; and Riley, K. M.: "Sensitivity of Optimum Solutions to Problems Parameters," *AIAA Journal*, Vol. 20, No. 9, pp. 1291–1299, September 1982. Sobieszczanski-Sobieski, J.: "Optimization by decom position: a step from hierarchic to non-hierarchic systems" Presented at the Second NASA/Air Force Symp. on Recent Advances in Multidisciplinary Analysis and Optimization (held in Hampton, VA), NASA CP-3031, Part 1. Also NASA TM-101494. 1988. Sobieszczanski-Sobieski, J.: "Sensitivity of Complex, Internally Coupled Systems" *AIAA Journal*, Vol. 28, No. 1, pp. 153–160, 1990. Sobieszczanski-Sobieski, J.: "Optimization by Decomposition in Structural and Multidisciplinary Applications". Chapter in Optimization of Large Structural Systems; NATO-ASI, Sept. 1991, Berchtesgaden; publ. by Kluwer 1993. Sobieszczanski-Sobieski, J.; and Haftka, R. T.: "Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments". Structural Optimization, pp. 1-23, Vol.14, No. 1, August 1997. Sobieszczanski-Sobieski, J., James, B., and Dovi, A., "Stuctural Optimization by Multi-Level Optimization," AIAA *Journal*, Vol. 23, Nov. 1983. Sobieski, I. P., and Kroo, I.M.: "Collaborative Optimization using Response Surface Estimation" AIAA-98-0915, 1998. Stelmack, M.; and Batill, S.: "Neural Network Approximation of Mixed Continuous/Discrete Systems in Multidisciplinary Design," Univ. of Notre Dame, Notre Dame, IN. AIAA-98-0916, 1998. Vanderplaats, G.N., and Cai, H.D.: "Alternative Methods for Calculating Sensitivity of Optimized Designs to Problem Parameters" NASA CP-2457, Proceedings of the Conference on Sensitivity Analysis in Engineering; NASA Langley Research Center, Hampton, VA, September 1986. #### **Appendix** This Appendix provides details of the Global Sensitivity Equations (GSE) applied to a system which optimizes BBs, the details of a technique for the BB Optimum Sensitivity Analysis, and the details of the aircraft range optimization model. #### 1. Global Sensitivity Equations Derivatives of Y w.r.t. X, and Z, are obtained rigorously from the Implicit Function Theorem in Sobieszczanski-Sobieski,1990. The condensed derivation is provided below. It begins by recognizing that (A1) $$Y_{1,2} = Y_{1,2}(Z, X_2, Y_{2,1}, Y_{2,3})$$ (A2) $$Y_{1,3} = Y_{1,3}(Z, X_3, Y_{3,1}, Y_{3,2})$$ (A3) $$Y_{2,1} = Y_{2,1}(Z, X_1, Y_{1,2}, Y_{1,3})$$ (A4) $$Y_{2,3} = Y_{2,3}(Z, X_3, Y_{3,1}, Y_{3,2})$$ (A5) $$Y_{3,1} = Y_{3,1}(Z, X_1, Y_{1,2}, Y_{1,3})$$ (A6) $$Y_{3,2} = Y_{3,2}(Z, X_2, Y_{2,1}, Y_{2,3})$$ where the independent variables are X and Z. Observe that eq. A1-A6 are coupled by $Y_{i,}$ e.g., $Y_{3,1}$ depends on $Y_{1,3}$ in eq. A5, and $Y_{1,3}$ depends on $Y_{3,1}$ in eq. A2. Consider for an example, the chain-differentiation w.r.t. $x_{1,i}$ applied to eq. A3. It yields A7) $$D(Y_{2,1},x_{1,j}) = d(Y_{2,1},x_{1,j}) + d(Y_{2,1},Y_1) D(Y_1,x_{1,j}) + d(Y_{2,1},Y_3) D(Y_3,x_{1,j})$$ Repeating the above for the remaining equations, treating $Y_{2,1}$ as a subset of Y_1 , and collecting the terms leads to eq. (2.1/2 and 3). The derivatives of Y w.r.t. z_k are obtained by simply replacing $x_{r,j}$ with z_k in eq. (2.1/2) to obtain A8) [A] $$\{D(Y,z_k)\} = \{d(Y,z_k)\}$$ #### 2. GSE/Optimized Subsystems In the preceding section both X and Z are independent variables. By virtue of BBOPT conducted for constant Z and Y inputs, X becomes dependent on Z so that derivatives of X w.r.t. exist in addition to derivatives of Y w.r.t. Z. For example, optimal X₂ depends on Z, Y_{2,1}, and Y_{2,3}, that are parameters in the optimization of BB₂. Hence, to compute the derivatives of Y and X w.r.t. Z, we begin by rewriting the functional relationships in eq. A1-A6, adding the new dependencies in all three BBs in the system, (A9) $$Y_{1,2} = Y_{1,2}(Z, X_2, Y_{2,1}, Y_{2,3})$$ (A10) $$Y_{1,3} = Y_{1,3}(Z, X_3, Y_{3,1}, Y_{3,2})$$ (A11) $$Y_{2,1} = Y_{2,1}(Z, X_1, Y_{1,2}, Y_{1,3})$$ (A12) $$Y_{2,3} = Y_{2,3}(Z, X_3, Y_{3,1}, Y_{3,2})$$ (A13) $$Y_{3,1} = Y_{3,1}(Z, X_1, Y_{1,2}, Y_{1,3})$$ (A14) $$Y_{3,2} = Y_{3,2}(Z, X_2, Y_{2,1}, Y_{2,3})$$ (A15) $$X_1 = X_1(Z, Y_{1,2}, Y_{1,3})$$ (A16) $$X_2 = X_2(Z, Y_{2,1}, Y_{2,3})$$ (A17) $$X_3 = X_3(Z, Y_{3,1}, Y_{3,2})$$ The same Implicit Function Theorem that is the basis of the GSE derivation may be applied to the above equations to obtain D(Y,Z). For example, by applying chain-differentiation to $Y_{2,1}$ treated as a subset of Y_2 , we obtain (A18) $$D(Y_2, z_k) = d(Y_2, z_k) + d(Y_2, X_2)D(X_2, z_k) + d(Y_2, Y_1)D(Y_1, z_k) + d(Y_2, Y_3)D(Y_3, z_k)$$ and for X_2 , again as one example: (A19) $$D(X_2, z_k) = d(X_2, z_k) + d(X_2, Y_1)D(Y_1, z_k) + d(X_2, Y_3)D(Y_3, z_k)$$ In the above, the D-terms are the total derivatives we seek, while the d-terms are the partial derivatives of two, different kinds. The derivatives of Y_r w.r.t. Y_s and Y_r w.r.t. X_r are obtained from BBSA_r using any sensitivity analysis algorithm appropriate for the particular BB_r (including the option of finite differencing). The derivatives of X_r w.r.t. z_k and X_r w.r.t. Y_s are produced by an analysis of optimum for sensitivity to parameters, BBOSA_r, explained in later in this Appendix. As a mathematical digression, one should mention at this point that the derivatives termed partial in the above would be called total in both BBSA and BBOSA. This is not a contradiction. It is so because the partial and total derivatives are hierarchically related in a multilevel system of parents and children. What is a total derivative in a child is partial at the parent level. In the application herein, the system of coupled three BBs is a parent, each BB is a child. The chain-derivative expressions for Y_1 , Y_3 , X_1 and X_3 look similar to eq. A18 and A19, differences are only in the subscripts. When the entire set of six chain- derivative expressions is written it forms a set of simultaneous, algebraic equations in which the total derivatives such as $D(Y_2,z_k)$ and $D(X_2,z_k)$ appear as unknowns. **This is a new generalization of GSE, termed GSE/OS for GSE/Optimized Subsystems.** For the case of three-BB system, these equations may be presented in a matrix format like this (A20) $$[M_{yy}]{D(Y,z_k)} + [M_{yx}]{D(X,z_k)} = d(Y,z_k)$$ $[M_{xy}]{D(Y,z_k)} + [M_{xx}]{D(X,z_k)} = d(X,z_k)$ The internal structure of the M-matrices in the above is for $[M_{yy}]$: $$\begin{bmatrix} I & -d(Y_1, Y_2) & -d(Y_1, Y_3) \\ -d(Y_2, Y_1) & I & -d(Y_2, Y_3) \\ -d(Y_3, Y_1) & -d(Y_3, Y_2) & I \end{bmatrix}$$ for $[M_{yx}]$: $$\begin{bmatrix} -d(Y_1, X_1) & 0 & 0\\ \hline 0 & -d(Y_2, X_2) & 0\\ \hline 0 & 0 & -d(Y_3, X_3) \end{bmatrix}$$ for $[M_{xy}]$: $$\begin{bmatrix} 0 & -d(X_1, Y_2) & -d(X_1, Y_3) \\ -d(X_2, Y_1) & 0 & -d(X_2, Y_3) \\ -d(X_3, Y_1) & -d(X_3, Y_2) & 0 \end{bmatrix}$$ and for [Mxx]: $$\begin{bmatrix} 0 & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{bmatrix}$$ Again, in the above, all $Y_{r,s}$ are folded into Y_r for compactness, and the terms are falling into the previously introduced categories as follows: - M_{yy} , M_{yx} , and $d(Y,z_k)$ ----- from BBSA - M_{xy} and $d(X,z_k)$ ----- from BBOSA As in GSE, one may obtain $D(Y_2,z_k)$ and $D(X_2,z_k)$ for all z_k , k=1--->NZ by means of one of the efficient techniques for linear equations with many right-hand-sides. 3. Black Box Optimum Sensitivity Analysis (BBOSA) Analysis of optimum for sensitivity to parameters (also called the post-optimum analysis) is preceded by solving a BB optimization problem (A21) Given: P Find: X Minimize: (X,P) Satisfy: $G(X,P) \le 0$, including sideconstraints and move limits where P are parameters kept constant while an optimizer manipulates X. In the BLISS application, the parameters P in BB_r are $z_{k},$ and $Y_{r,s}.$ because these quantities are kept constant in $BBOPT_{r}.$ After ϕ_{min} , and X_{opt} are found, one may seek sensitivity of these quantities to the change of P in form of the derivatives $D(\phi_{min},P)$ and $D(X_{opt},P)$. Vanderplaats and Cai, 1986, review techniques, rigorous and approximate, available for calculating $D(X_{opt},P)$. The technique adapted for the BLISS/A purposes comprises the following steps executed for BB_r: - 1. Choose parameter $P_k,$ an element of Z or Y, and increment it by a ΔP - 2. Use derivatives from SSA to extrapolate F and G_o Table A1: BB Definitions | ВВ | Inputs | Internal | Outputs | |---------------------|---
--|--| | Structures | AR, Λ ,
t_C' , S_{REF} ,
W_{FO} , W_O ,
W_E , L ,
N_Z , λ , x | $t = \frac{t_{C} S_{REF}}{\sqrt{S_{REF} AR}}; b / 2 = \sqrt{S_{REF} AR} / 2; R = \frac{1 + 2\lambda}{3(1 + \lambda)}; \Theta = \\ pf(x, \frac{b}{2}, R, L); Fo1 = pf(x); W_{W} = (0.005 l(W_{T} N_{Z})^{0.557} S_{REF}^{0.649} \\ AR^{0.5} (\frac{t}{C})^{-0.4} (1 + \lambda)^{0.1} (0.1875 S_{REF})^{0.1} / \cos(\Lambda)) Fo1; W_{FW} = \\ (5S_{REF} / 18) (\frac{2}{3} t) 42.5; W_{F} = W_{FW} + W_{FO}; W_{T} = W_{O} + W_{W} + W_{F} \\ + W_{E}; \sigma1 \rightarrow \sigma5 = pf(\frac{t}{C}, L, x, \frac{b}{2}, R); $ | $W_{\scriptscriptstyle T}, W_{\scriptscriptstyle F},$ Θ | | Aero-
dynamics | $AR, \frac{t}{c},$ $S_{REF}, W_{T},$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L, D, L/D | | Propulsion | M, h, D,
W _{BE} , T | | SFC, W _e ,
ESF | | Range | $M, h, \frac{L}{D}, W_T, W_F, SFC$ | if h > 36089ft; R = $\frac{M(L/D)661\sqrt{\theta}}{SFC} ln \left(\frac{W_T}{W_T - W_F} \right)$ | R | | Constants Side Con- | | 20001b; $W_0 = 250001b$; $N_Z = 6g$; $W_{BE} = 43601b$; $C_{Dmin,M<1} = 0.0$
0.4; $0.75 \le x \le 1.25$; $0.75 \le C_f \le 1.25$; $0.1 \le T \le 1.0$; $0.01 \le t/c \le 0$ | | | straints | 30000 ≤ 1 | $1 \le 60000$; $1.4 \le M \le 1.8$; $2.5 \le AR \le 8.5$; $40 \le \Lambda \le 70$; $500 \le S_R$ | $_{\rm EF} \le 1500$ | linearly and by Linear Programming solve XL <= X <= XU; where XL and XU incorporate the side constraints and the move limits: to obtain X_{opt}. - 3. Approximate $D(X,P) = \Delta X_{opt}/\Delta P$ - Repeat from #1 for all elements of Z and Y input into BB_r. Repeated for all BBs, the above procedure yields a set of D(X,Z) and D(X,Y) to be entered as d(X,Z) and d(X,Y) into GSE/OS, eq. A20. Solution of eq. A20 provides D(X,Z) and D(Y,Z). The latter is substituted into eq. (2.2.3/2), and $D(\Phi,Z)$, extracted from D(Y,Z), goes into eq. (2.2.3/1). #### 4. A/C Range Optimization Model. Table A1 shows the equations used in each of the BBs for the aircraft model. Polynomial functions are represented by 'pf()' with independent variables in the parentheses. Each polynomial function is of the form: (A22) $$PF = A_o + A_i * S^T + (1/2) * S * A_{ii} * S^T$$ Where S is the vector of independent variables, and A_o , A_i , and A_{ii} are coefficient terms. In calculating the polynomial functions using eq. A22, terms in the S vectors are in the same order as they appear in pf() in Table A1. The off diagonal terms of A_{ij} are random numbers between 0 and 1. For this model, they are | | <u> </u> | 0.3970 | 0.8152 | 0.9230 | 0.1108 | |------------|----------|--------|--------|--------|--------| | | 0.4252 | - | 0.6357 | 0.7435 | 0.1138 | | $A_{ij} =$ | 0.0329 | 0.8856 | | 0.3657 | 0.0019 | | | 0.0878 | 0.7248 | 0.1978 | | 0.0169 | | | 0.8955 | 0.4568 | 0.8075 | 0.9239 | | The remaining coefficient are: $$\begin{array}{ll} \bullet & \Theta \dashrightarrow \\ & A_o = [1.0]; \ A_i = [0.3 \ \hbox{-} 0.3 \ \hbox{-} 0.3 \ \hbox{-} 0.2]; \\ & A_{ii} = [0.4 \ \hbox{-} 0.4 \ \hbox{-} 0.4 \ \hbox{0}]; \end{array}$$ • Fo1 ---> $$A_o = [1.0]; A_i = [6.25]; A_{ii} = [0];$$ • $$\sigma 1 \longrightarrow A_o = [1.0]; A_i = [-0.75 \ 0.5 \ -0.75 \ 0.5]$$ $$\begin{array}{ll} 0.5]; \ A_{ii} = [-2.5\ 0\ -2.5\ 0\ 0]; \\ \bullet \quad \sigma 2 ---> & A_{o} = [1.0]; \ A_{i} = [-0.5\ 0.333\ -0.5\ 0.333]; \\ 0.333]; \ A_{ii} = [-1.111\ 0\ -1.111\ 0\ 0]; \end{array}$$ • $$\sigma$$ 3---> $A_o = [1.0]; A_i = [-0.375 \ 0.25 \ -0.375 \ 0.25 \ 0.25]; A_{ii} = [-0.625 \ 0 \ -0.625 \ 0 \ 0];$ • $$\sigma 4 \longrightarrow A_o = [1.0]; A_i = [-0.3 \ 0.2 \ -0.3 \ 0.2 \ 0.2];$$ $A_{ii} = [-0.4 \ 0 \ -0.4 \ 0 \ 0];$ • $$\sigma 5 --->$$ $A_o = [1.0]; A_i = [-0.25 \ 0.1667 \ -0.25 \ 0.1667 \ 0.1667]; A_{ii} = [-0.2778 \ 0 \ -0.2778 \ 0 \ 0];$ • Fo2 ---> $$A_o = [1.0]; A_i = [0.2 \ 0.2]; A_{ii} = [0 \ 0];$$ • Fo3 ---> $$A_0 = [1.0]; A_i = [0]; A_{ii} = [0.04];$$ • $$dp/dx ---> A_o = [1.0]; A_i = [0.2]; A_{ii} = [0];$$ • Temp ---> $$A_o = [1.0]$$; $A_i = [0.3 -0.3 \ 0.3]$; $A_{ii} = [0.4 -0.4 \ 0.4]$; Equations for SFC and the upper constraint bound on throttle setting in the Propulsion BB are polynomials representing surfaces fit to engine deck data (AIAA/UTC/Pratt & Whitney, 1995/96). #### 5. A/C Range MATLAB Code. Included in the following pages is the MATLAB code for the aircraft range optimization model. The constrained optimization routine used in BB1OPT, BB2OPT, BB3OPT, and SYSOPT may be found in MATLAB's Optimization Toolbox and is based on a Sequential Quadratic Programming method. The finite differencing subfunctions in FIN_DIFF are simple one-step forward finite difference codes that use a 1 percent step increment. | %- | | % | them. Local optim | nizations are performed on each BB (BBOPT) as | well as a | |----|--|-----|-------------------|--|------------| | % | | % | | ization (SOPT) using a gradient guided path base | | | % | Program Listing | % | | ers (OSAAA). Finally, all optimized changes to | | | % | 6 ·· · · · · · · · · · · · · · · · · · | % | | to update the model for an improved range. | <i>6</i> | | % | Name Page Number | % | | r | | | % | C | % | Author | : Jeremy S. Agte NASA Langley/GWU S | Spring '98 | | % | BLISS16 | % | | , , , | 1 0 | | % | SYSTEM_ANALYSIS19 | % | Variables | : | | | % | BB_WEIGHT20 | % | A | - Coefficient matrix in GSE | none | | % | BB_DRAGPOLAR23 | % | DY_AR | - Vector of total derivatives, behavior | | | % | BB_POWER23 | % | | variables w.r.t aspect ratio | vary | | % | BB_RANGE24 | % | DY_Cf | - Vector of total derivatives, behavior | • | | % | POLYAPPROX25 | % | | variables w.r.t skin friction coefficient | vary | | % | BB1OPT26 | % | DYE1_Z | - Matrix of total derivatives, behavior | • | | % | BB1WRAPPER28 | % | | variables from BB1 w.r.t Z variables | vary | | % | BB2OPT28 | % | DYE2_Z | - Matrix of total derivatives, behavior | • | | % | BB2WRAPPER29 | % | | variables from BB2 w.r.t Z variables | vary | | % | BB3OPT30 | % | DYE3_Z | - Matrix of total derivatives, behavior | · | | % | BB3WRAPPER31 | % | | variables from BB3 w.r.t Z variables | vary | | % | SYSOPT32 | % | DY4_Z | - Vector of total derivatives, range w.r.t | | | % | SYSWRAPPER33 | % | | Z variables | vary | | % | INBOUNDS34 | % | DY_h | - Vector of total derivatives, behavior | | | % | FIN_DIFF34 | % | | variables w.r.t altitude | vary | | % | | % | DY_Lamda | - Vector of total derivatives, behavior | | | % | The electronic version of this code has been placed in custody of Dr. Jaroslaw | % | | variables w.r.t wing sweep | vary | | % | Sobieski, NASA Langley Research Center, Hampton, VA 23681. | % | DY_lamda | - Vector of total derivatives, behavior | | | % | | % | | variables w.r.t taper ratio | vary | | %- | | - % | DY_M | - Vector of total derivatives, behavior | | | | | % | | variables w.r.t Mach number | vary | | | | % | DY_Sref | - Vector of total derivatives, behavior | | | %- | | % | | variables w.r.t wing surface area | vary | | % | | % | DY_T | - Vector of total derivatives, behavior | | | % | Program BLISS | % | | variables w.r.t throttle setting | vary | | % | | % | DY_tc | - Vector of total derivatives, behavior | | | % | This program calls a system analysis for an aircraft range optimization | % | | variables w.r.t thickness/chord ratio | vary | | % | model, composed of the WEIGHT, DRAGPOLAR, and POWER black boxes | % | DY_x | - Vector of total derivatives, behavior | | | % | (BB1, BB2, and BB3, respectively). Through black box (BBSA) and system | % | | variables w.r.t wingbox x-section | vary | | % | sensitivity (SSA) analyses, it calculates the derivatives necessary to solve the | % | DYX_nd | - Array of non-dimensional total derivatives, | | | % | Global Sensitivity Equations (Sobieszczanski_Sobieski, 1990) and solves | % | | behavior w.r.t. X variables | vary | | | | | | | | | % | DYZ_nd | - Array of non-dimensional total derivatives, | | % | |---|--------------|---|--------|---| | % | | behavior w.r.t. Z variables | vary | % | | % | ext_error | - Difference between previous pass extrapol- | | | | % | | ated range and actual system analysis range | NM | %Initialize Variables% | | % | GRADphi4_Z | - Vector of total derivatives at the optimal | | | | % | | state, range w.r.t Z variables | vary | vlb=[.1 .75 .75 .1 .01 30000 1.4 2.5 40 500]; | | % | i0 | - Design variable initial values | vary | i0=[.25 1 1 .5 .05 45000 1.6 5.5 55 1000]; | | % | phi_BBOPT | - Change in range due to X variables | NM | vub=[.4 1.25 1.25 1 .09 60000 1.8 8.5 70 1500]; | | % | phi_SysOPT | - Change in range due to Z variables | NM | P_var=i0; | | % | P_var | - Vector of current design variable values | vary | X1=i0(1:2); | | % | phi_X_Z | - Change in range due to X and Z variables | NM | X2=i0(3); | | % | | variables w.r.t taper ratio | vary | X3=i0(4); | | % | vlb | - Lower bounds on design variables | vary | Z=i0(5:10); | | % | vub | - Upper bounds on design variables | vary | $phi_X_Z = 0;$ | | % | X1(1) | - Wing taper ratio | none | | | % | X1(2) | - Wingbox x-sectional area as poly. funct. | p.f | %Begin BLISS Loop% | | % |
X2 | - Skin friction coefficient as poly. funct. | p.f. | | | % | X3 | - Throttle setting | none | for $i=1:6$ | | % | Z(1) | - Thickness/chord ratio | none | | | % | Z(2) | - Altitude | ft | %SYSTEM ANALYSIS% | | % | Z(3) | - Mach number | none | | | % | Z(4) | - Aspect ratio | none | [Y1,Y2,Y3,Y4,Y12,Y14,Y21,Y23,Y24,Y31,Y32,Y34,G1,G2,G3,C,Twist_initial,x_in | | % | Z(5) | - Wing sweep | deg | itial,L_initial,R_initial,ESF_initial,Cf_initial,Lift_initial,tc_initial,M_initial,h_initial, | | % | Z(6) | - Wing surface area | ft^2 | T_initial]=system_analysis(Z,X1,X2,X3,i0); | | % | | | | | | % | Subfunctions | : | | %BBSA% | | % | BB1_OPT | -Finds optimal change in X1 using M | IATLAB | | | % | | optimizer | | [A,dY_lambda,dY_x,dY_Cf,dY_T,dY_tc,dY_h,dY_M,dY_AR,dY_Lambda,dY_Sref, | | % | BB2_OPT | -Finds optimal change in X2 using M | IATLAB | dg1_Z,dg2_Z,dg3_Z,dg1_YE1,dg2_YE2,dg3_YE3]=FIN_DIFF(Z,Y1,Y2,Y3,Y4,Y12, | | % | | optimizer | | Y14,Y21,Y23,Y24,Y31,Y32,Y34,X1,X2,X3,G1,G2,G3,C,Twist_initial,x_initial,L_in | | % | BB3_OPT | -Finds optimal change in X3 using M | IATLAB | itial,R_initial,ESF_initial,Cf_initial,Lift_initial,tc_initial,M_initial,h_initial,T_initial) | | % | | optimizer | | ; | | % | FIN_DIFF | -Provides partial derivatives using or | ie- | | | % | | step forward finite differencing | | %SSA% | | % | INbounds | -Non-dimensionalizes bounds on X a | nd Z | | | % | system_ana | llysis -Solves for behavior variables using 0 | Gauss- | $DY_lamda = A dY_lambda;$ | | % | | Seidel iteration | | $DY_x = A dY_x;$ | | % | Sys_OPT | -Finds optimal change in Z using MA | ATLAB | $DY_Cf = A \setminus dY_Cf;$ | | % | | optimizer | | $DY_T = A \backslash dY_T;$ | ``` GRADphi4 Z = [Dphi1 Z + Dphi2 Z + Dphi3 Z + Dphi1 Y*DYE1 Z + Dphi2 Y*DYE2 Z + Dphi3 Y*DYE3 Z + DY4 Z] DY tc=A dY tc; DY h=A dY h; DY M=A\backslash dY M; %----SOPT----% DY AR=A \setminus dY AR; DY Lambda=A\dY Lambda; [dZ,phi_SysOPT,G_sys(i,:)]=SysOPT(vlb_nd,vub_nd,i0,P_var,Y4,GRADphi4_Z,Z,dg DY Sref=A\dY Sref; 2 Z,G2); phi_SysOPT=phi_SysOPT+Y4(1); DYE1_Z=[DY_tc(4) DY_h(4) DY_M(4) DY_AR(4) DY_Lambda(4) DY_Sref(4); ext error = -phi X Z - Y4(1); phi_X_Z=-Y4(1)+phi_BBOPT+phi_SysOPT; DY_tc(8) DY_h(8) DY_M(8) DY_AR(8) DY_Lambda(8) DY_Sref(8)]; DYE2 Z=[DY tc(1) DY h(1) DY M(1) DY AR(1) DY Lambda(1) DY Sref(1); DY tc(3) DY h(3) DY M(3) DY AR(3) DY Lambda(3) DY Sref(3); DY tc(9) %----Non-dimensionalize Derivatives for Output Observation----% DY h(9) DY M(9) DY AR(9) DY Lambda(9) DY Sref(9)]; DYE3 Z=[DY tc(5) DY h(5) DY M(5) DY AR(5) DY Lambda(5) DY Sref(5)]; DYX = [DY \ lamda \ DY \ x \ DY \ Cf \ DY \ T]; DY4 Z=[DY tc(10) DY h(10) DY M(10) DY AR(10) DY Lambda(10) DYZ = [DY tc DY h DY M DY AR DY Lambda DY Sref]; [XY_init,ZY_init] = NonDim(X1,X2,X3,Y1,Y2,Y3,Y4,Z); DY Sref(10)]; DYX nd(:,:,i) = DYX.*XY init; %----BBOPT----% DYZ nd(:,:,i) = DYZ.*ZY init; [vlb nd,vub nd]=INbounds(i0,vlb,vub); %----Store Interim Results----% [dX1,Lagrange1,phi BB1OPT,BB1 G(i,:)]=BB1OPT(vlb nd,vub nd,i0,P var,Z,Y21, Var(1:18,i)=[Y4 ext error -phi BB1OPT -phi BB2OPT -phi BB3OPT -phi BBOPT Y31,X1,x initial,L initial,R initial,Lift initial,Twist initial,tc initial,C,DY lamda, -phi_SysOPT -phi_X_Z X1 X2 X3 Z]'; DY x); [dX2,Lagrange2,phi_BB2OPT]=BB2OPT(vlb_nd,vub_nd,i0,P_var,Z,Y12,Y32,X2,ES %----Update X and Z variables----% F initial, Cf initial, Twist initial, tc initial, C, DY Cf); [dX3,Lagrange3,phi_BB3OPT,BB3_G(i,:)]=BB3OPT(vlb_nd,vub_nd,i0,P_var,Z,Y23, X1=X1+dX1; X3,M initial,h initial,T initial,C,DY T); X2=X2+dX2; phi BBOPT = phi BB1OPT + phi BB2OPT + phi BB3OPT; X3=X3+dX3; Z=Z+dZ': %----OSAAA----% P var=[X1 X2 X3 Z]; Dphi1_Z = [Lagrange1'*dg1_Z]; end %End BLISS loop Dphi2 Z = [Lagrange2*dg2 Z]; Dphi3 Z = [Lagrange3*dg3 Z]; %----Format Output Parameters----% Dphi1 Y = [Lagrange1'*dg1 YE1]; Dphi2 Y = [Lagrange2'*dg2 YE2]; RLB = 'Range SSA ext error dR BB1 dR BB2 dR BB3 dR X dR Z Range ext TapRat WingBox Cf Thrtl t/c h M AR lambda Sref'; Dphi3_Y = [Lagrange3'*dg3_YE3]; ``` ``` CLB = 'Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6 Pass 7 Pass 8 Pass 9 Pass 10 Z(2) - Altitude ft Pass 11 Pass 12 Pass 13 Pass 14 Pass 15 Pass 16 Pass 17 Pass 18 Pass 19 Z(3) - Mach number none Pass 20 Pass 21 Pass 22 Pass 23 Pass 24 Pass 25 Pass 26 Pass 27 Pass 28 - Aspect ratio % Z(4) none Pass 29 Pass 30 Pass 31 Pass 32 Pass 33 Pass 34 Pass 35 Pass 36 Pass 37 Z(5) - Wing sweep deg Pass 38 Pass 39 Pass 40'; ft^2 - Wing surface area % Z(6) printmat(Var,[],RLB,CLB); % Output Variables RLB1 = 'Y1(1) Y1(2) Y1(3) Y2(1) Y2(2) Y2(3) Y3(1) Y3(2) Y3(3) Y4'; C - Vector of constants % vary CLB1 = X1(1) X1(2) X2 X3; % Ga - Vector of constraint values in BBa (a = 1,2,3) vary %printmat(DYX nd(:,:,1), 'Non-Dimensional D(Y,X)',RLB1,CLB1); % - Vector of behavior variables output from Ya % from BBa (a = 1,2,3) vary - Vector of behavior variables output from % Yah BBa, input to BBb (a & b = 1,2,3) RLB2 = Y1(1) Y1(2) Y1(3) Y2(1) Y2(2) Y2(3) Y3(1) Y3(2) Y3(3) Y4'; % vary CLB2 = 'Z1 Z2 Z3 Z4 Z5 Z6'; - Objective function output from BB4 % Y4 NM - preserved values for polynomial construction %printmat(DYZ nd(:,:,1),'Non Dimensional D(Y,Z)',RLB2,CLB2); % var inititial % (var differs depending on particular poly.) vary % G=[BB1 GG sys(:,1) BB3 G]; RLB3 = 'Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6'; Local Variables CLB3 = 'sig1 sig2 sig3 sig4 sig5 twist u twist 1 dp/dx ESF u ESF 1 temp Throttle'; - Test variable used in G-S iteration for % Lu printmat(G,'Constraints at Beginning of Pass',RLB3,CLB3); convergence of lift % 1b - Test variable used in G-S iteration for % Wen convergence of engine weight % 1b ESFu - Test variable used in G-S iteration for % convergence of engine scale factor % % none % % Subfunction SYSTEM ANALYSIS % Subfunctions This subfunction uses Gauss-Seidel iteration on the aircraft range optimization % -Calculates a/c structural weights BB weight model to compute behavior variables, given a set of design variables. Black boxes -Calculates aerodynamic values % BB dragpolar WEIGHT, DRAGPOLAR, and POWER are called. -Calculates propulsion values % BB power -Calculates system objective function % % BB range % Author : Jeremy S. Agte NASA Langley/GWU Spring '98 % Input Variables % - Design variable initial values i0 vary func- - Wing taper ratio % X1(1) none tion[Y1,Y2,Y3,Y4,Y12,Y14,Y21,Y23,Y24,Y31,Y32,Y34,G1,G2,G3,C,Twist initial, - Wingbox x-sectional area as poly. funct. % X1(2) p.f. x_initial,L_initial,R_initial,ESF_initial,Cf_initial,Lift_initial,tc_initial,M_initial,h_in - Skin friction coefficient as poly. funct. itial,T initial]=system analyis(Z,X1,X2,X3,i0) % X2 p.f. % - Throttle setting X3 none - Thickness/chord ratio % Z(1) [Y1,Y2,Y3,Y4,Y12,Y14,Y21,Y23,Y24,Y31,Y32,Y34,C]=Y variables; none ``` | %Preserve initial values for polynomial calculations% | | ile = 'in_out1.dat'; | Y3,Y4,Y12,Y14,Y21,Y23,Y24,Y31,Y32,Y34,X1, | V2 V2 C file) | |--|-----------------------|----------------------|--|------------------------| | Twist_initial=Y12(2); | % V | viiie_vai(Z, 11, 12, | 13,14,112,114,121,123,124,131,132,134, X 1,2 | A2,A3,C,IIIe) | | x_initial=i0(2); | , | | | | | tc_initial=i0(5); | | | | | | L_initial=sqrt(i0(8)*i0(10))/2; | 0/2 | | | | | $R_{\text{initial}} = \frac{3q}{(10(3)^{3})(3^{2}(1+i0(1)))};$ | %
% | | | | | ESF_initial=Y32(1); | % | | Subfunction BB_WEIGHT | | | Cf_initial=i0(3); | % | | Sublunction BB_WEIGITI | | | Lift_initial=Y21(1); | % | This subfunction of | calculates the weight of the aircraft by structure and | d adds them | | M_initial=i0(7); | /0
0/ ₂ | | rcraft weight. It calls the subfunction POLYAPPR | | | h_initial=i0(f); | % | | resented by polynomials. | COX to Com- | | T_initial=i0(4); | % | pute functions rep | resented by polynomials. | | | 1_IIII(Id1=10(4), | % | Author | : Jeremy S. Agte NASA Langley/GWU S | pring '98 | | %Execute Gauss Seidel iteration on system to find Y variables% | % | Author | . Jetelity 5. Agec TVASA Langley/GW 6 5 | pring 70 | | 70 | % | Input Variables | | | | Lu=Y21(1)+10; | % | C | - Vector of constants | vary | | Weu=Y31(1)+10; | % | L initial | - Initial halfspan length | ft | | ESFu=Y32(1)+10; | % | Lift_initial | - Initial lift | lb | | while ((abs(Lu-Y21(1))>(Y21(1)*.001)) (abs(Weu-Y31(1))>(Y31(1)*.001)) | % | R_initial | - Initial location of lift as fraction of halfspan | none | | (abs(ESFu-Y32(1))>(Y32(1)*.001))) | % | tc_initial | - Initial thickness to chord ratio | none | | Lu=Y21(1); | % | Twist_initial | - Initial wing twist | p.f. | | Weu=Y31(1); | % | x_initial | - Initial wingbox x-sectional thickness | p.f. | | ESFu=Y32(1); | % | X1(1) | - Wing taper ratio | none | | LSI u=132(1), | % | X1(2) | - Wingbox x-sectional area as poly. funct. | p.f. | | %Call Black Boxes% | % | Y21 | - Lift | lb | | 70 Cult Black Boxes 70 | % | Y31 | - Engine weight | lb | | [Y1,Y12,Y14,G1] = | % | Z(1) | - Thickness/chord ratio | none | | BB_weight(Z,Y21,Y31,X1,x_initial,L_initial,R_initial,Lift_initial,Twist_initial,tc_ini | % | Z(2) | - Altitude | ft | | tial,C); | % | Z(3) | - Mach number | none | | ,,,- | % | Z(4) | - Aspect ratio | none | | [Y2,Y21,Y23,Y24,G2]=BB_dragpolar(Z,Y12,Y32,X2,ESF_initial,Cf_initial,Twist_in | % | Z(5) | - Wing sweep | | | itial,tc_initial,C); | % | Z(6) | - Wing surface area | deg
ft ² | | [Y3,Y34,Y31,Y32,G3]=BB_power(Z,Y23,X3,M_initial,h_initial,T_initial,C); | % | _(*) | | | | [Y4]=BB_range(Z,Y14,Y24,Y34); | % | Output Variables | : | | | end | % | G1(1) | - Stress on wing | p.f. | | | % | G1(2) | - Stress on wing | p.f. | | %Write post-iterative variable to output file% | % | G1(3) | - Stress on wing | p.f. | ``` % G1(4) - Stress on wing p.f. Y1(3) = PolyApprox(S initial1,S1,flag1,bound1); G1(5) - Stress on wing Y12(2) = Y1(3); p.f. - Wing twist as constraint % G1(6) p.f. - Total aircraft weight Y1(1) %-----Polynomial function calculating wingbox X-sectional
thickness-----% lb - Fuel weight % Y1(2) 1b % Y1(3) - Wing twist p.f. S_initial2=[x_initial]; - Total aircraft weight % Y12(1) lb S2=[X1(2)]; % - Wing twist Y12(2) p.f. flag2=[1]; - Total aircraft weight % Y14(1) lb bound2=[.008]; % - Fuel weight Fo=PolyApprox(S_initial2,S2,flag2,bound2); Y14(2) lb W wing = Fo^*(.0051^*((Y21(1)^*C(3))^*.557)^*(Z(6)^*.649)^*(Z(4)^*.5)^*(Z(1)^*-.4)^*((1+ % X1(1))^.1)*((cos(Z(5)*pi/180))^-1)*((.1875*Z(6))^.1)); Local Variables - Halfspan ft - Wing aerodynamic center % R W fuel wing = (5*Z(6)/18)*(2/3*t)*(42.5); none - Wing thickness % ft Y1(2) = C(1) + W fuel wing; Y1(1) = C(2) + W \text{ wing} + Y1(2) + Y31(1); % W wing - Weight of the wing lb - Wing aerodynamic center Y12(1) = Y1(1); % W fuel wing lb % Y14(1) = Y1(1); % Y14(2) = Y1(2); Subfunctions % PolyApprox -Forms polynomial functions for desired variables % %-----THIS SECTION COMPUTES THE TOTAL WEIGHT OF A/C-----% %---THIS SECTION COMPUTES CONSTRAINT POLYNOMIAL FUNCTIONS--% func- tion[Y1,Y12,Y14,G1]=BB_weight(Z,Y21,Y31,X1,x_initial,L_initial,R_initial,Lift_in S_initial3=[tc_initial,Lift_initial,x_initial,L_initial,R_initial]; itial, Twist initial, tc initial, C) S3=[Z(1),Y21(1),X1(2),L,R]; flag3 = [4,1,4,1,1]; %-----THIS SECTION COMPUTES THE TOTAL WEIGHT OF A/C-----% bound3 = [.1,.1,.1,.1,.1]; G1(1)=PolyApprox(S initial3,S3,flag3,bound3); %--wing stress t = Z(1)*Z(6)/sqrt(Z(6)*Z(4)); %--wing thickness L=sqrt(Z(4)*Z(6))/2; %--halfspan S initial4=[tc initial,Lift initial,x initial,L initial,R initial]; R=(1+2*X1(1))/(3*(1+X1(1))); %--wing aerodynamic center location S4=[Z(1),Y21(1),X1(2),L,R]; flag4 = [4,1,4,1,1]; %-----Polynomial function calculating wing twist----% bound4 = [.15, .15, .15, .15, .15]; G1(2)=PolyApprox(S initial4,S4,flag4,bound4); %--wing stress S_initial1=[x_initial,L_initial,R_initial,Lift_initial]; S1=[X1(2),L,R,Y21(1)]; S initial5=[tc initial,Lift initial,x initial,L initial,R initial]; S5=[Z(1),Y21(1),X1(2),L,R]; flag1 = [2,4,4,3]; bound1 = [.25, .25, .25, .25]; flag5 = [4,1,4,1,1]; ``` ``` bound5 = [.2,.2,.2,.2,.2]; % Y32 - Engine scale factor none G1(3)=PolyApprox(S initial5,S5,flag5,bound5); %--wing stress Z(1) - Thickness/chord ratio none Z(2) - Altitude ft Z(3) - Mach number S_initial6=[tc_initial,Lift_initial,x_initial,L_initial,R_initial]; none S6=[Z(1),Y21(1),X1(2),L,R]; % Z(4) - Aspect ratio none flag6 = [4,1,4,1,1]; Z(5) - Wing sweep deg - Wing surface area ft^2 bound6 = [.25, .25, .25, .25, .25]; % Z(6) G1(4)=PolyApprox(S initial6,S6,flag6,bound6); %--wing stress % % Output Variables - Pressure gradient S_initial7=[tc_initial,Lift_initial,x_initial,L_initial,R_initial]; % G2 p.f. S7=[Z(1),Y21(1),X1(2),L,R]; % Y2(1) - Lift lb 1h flag7 = [4,1,4,1,1]; % Y2(2) - Drag - Lift-to-drag ratio bound7 = [.3, .3, .3, .3, .3]; % Y2(3) none G1(5)=PolyApprox(S initial7,S7,flag7,bound7); %--wing stress - Lift Y21 1h % Y23 - Drag lb G1(6)=Y1(3); %--wing twist % Y24 - Lift-to-drag ratio none % %---THIS SECTION COMPUTES CONSTRAINT POLYNOMIAL FUNCTIONS--% Local Variables % CL - Coefficient of lift none CD - Coefficient of drag % none % CDmin - Minimum drag coefficient none - Induced drag factor % % k none Subfunction BB_DRAGPOLAR % % - Density slug/ft³ rho % % V - Velocity ft/s This subfunction calculates the drag and lift-to-drag ratio of the aircraft. It calls % the subfunction POLYAPPROX to compute functions represented by polynomi- % Subfunctions % % als. PolyApprox -Forms polynomial functions for desired variables % % % : Jeremy S. Agte NASA Langley/GWU Author Spring '98 % Input Variables - Vector of constants % C tion[Y2,Y21,Y23,Y24,G2]=BB dragpolar(Z,Y12,Y32,X2,ESF initial,Cf initial,Twis vary - Initial coefficient of friction % Cf initial t initial,tc initial,C) p.f. % ESF initial - Initial engine scale factor none - Initial thickness to chord ratio % tc initial none %-----THIS SECTION COMPUTES THE TOTAL DRAG OF THE A/C-----% Twist initial - Initial wing twist p.f. - Coefficient of friction % X2 p.f. if Z(2)<36089 % - Total aircraft weight 1b V = Z(3)*(1116.39*sqrt(1-(6.875e-06*Z(2)))); Y12(1) - Wing twist % Y12(2) p.f. rho = (2.377e-03)*(1-(6.875e-06*Z(2)))^4.2561; ``` ``` else V = Z(3)*968.1: %-----THIS SECTION COMPUTES CONSTRAINT POLYNOMIALS-----% rho = (2.377e-03)*(.2971)*exp(-(Z(2)-36089)/20806.7); end S_initial3=[tc_initial]; S3=[Z(1)]; CL = Y12(1)/(.5*rho*(V^2)*Z(6)); %--Lift Coefficient flag3=[1]; bound3=[.25]; %-----Polynomial function modifying CDmin for ESF and friction coefficient-----% G2(1)=PolyApprox(S_initial3,S3,flag3,bound3); %--adverse pressure gradient S_initial1=[ESF_initial,Cf_initial]; %-----THIS SECTION COMPUTES CONSTRAINT POLYNOMIALS-----% S1=[Y32(1),X2(1)]; flag1 = [1,1]; bound1 = [.25, .25]; Fo1 = PolyApprox(S initial1,S1,flag1,bound1); % CDmin = C(5)*Fo1 + 3.05*(Z(1)^{(5/3)})*((cos(Z(5)*pi/180))^{(3/2)}); % Subfunction BB POWER % if Z(3) >= 1 This subfunction calculates fuel consumption and engine weight as well as engine scale factor. It calls the subfunction POLYAPPROX to compute functions k=Z(4)*(Z(3)^2-1)*cos(Z(5)*pi/180)/(4*Z(4)*sqrt(Z(5)^2-1)-2); represented by polynomials. else k=1/(pi*0.8*Z(4)); % % Author : Jeremy S. Agte NASA Langley/GWU end Spring '98 % %-----Polynomial function modifying CD for wing twist-----% Input Variables % - Vector of constants % vary % h initial - Initial altitude S_initial2=[Twist_initial]; ft S2=[Y12(2)]; % M initial - Initial Mach number none - Initial throttle setting flag2=[5]; % T initial none bound2=[.25]; % X3 - Throttle setting none Fo2=PolyApprox(S initial2,S2,flag2,bound2); % - Drag Y23 1b CD = Fo2*(CDmin + k*(CL^2)); - Thickness/chord ratio % Z(1) none Z(2) - Altitude ft Y2(2) = .5*rho*(V^2)*CD*Z(6); Z(3) - Mach number none Y2(3) = CL/CD; - Aspect ratio Z(4) none - Wing sweep Y2(1)=Y12(1); Z(5) deg - Wing surface area ft^2 Y23(1)=Y2(2); % Z(6) Y24(1)=Y2(3); Y21(1)=Y2(1); Output Variables % G3(1) - Engine scale factor constraint none %----THIS SECTION COMPUTES THE TOTAL DRAG OF THE A/C----% - Engine temperature % G3(2) p.f. ``` ``` % G3(3) - Throttle setting constraint Y3(2) = C(4)*(Y3(3)^1.05)*3; none Y3(1) - Specific fuel consumption Y31(1) = Y3(2); 1/hr - Engine weight % Y3(2) 1b Y34(1) = Y3(1); - Engine scale factor Y32(1) = Y3(3); Y3(3) none - Engine weight % Y31 1b % Y32 - Engine scale factor %----THIS SECTION COMPUTES SFC, ESF, AND ENGINE WEIGHT----% none - Specific fuel consumption % Y34 1/hr % Local Variables %---THIS SECTION COMPUTES POLYNOMIAL CONSTRAINT FUNCTIONS--% - Non-dimensional throttle setting % Dim Throttle none - Vector of constant coefficients for upper % G3(1)=Y3(3); %--engine scale factor limit on throttle setting surface fit % none - Vector of constant coefficients for SFC % S initial1=[M initial,h initial,T initial]; S surface fit % S1=[Z(3),Z(2),X3(1)]; none % Thrust - Thrust required lb flag1 = [2,4,2]; - Upper limit on throttle setting % Throttle uA bound1 = [.25, .25, .25]; none % G3(2) = PolyApprox(S initial1,S1,flag1,bound1); %--engine temperature Subfunctions % PolyApprox -Forms polynomial functions for desired variables p=[11483.7822254806 10856.2163466548 -0.5080237941 3200.157926969 - % 0.1466251679 0.0000068572]; Throt- tle uA=p(1)+p(2)*Z(3)+p(3)*Z(2)+p(4)*Z(3)^2+2*p(5)*Z(3)*Z(2)+p(6)*Z(2)^2; G3(3)=Dim Throttle/Throttle uA-1; %--throttle setting function[Y3,Y34,Y31,Y32,G3]=BB_power(Z,Y23,X3,M_initial,h_initial,T_initial,C) %----THIS SECTION COMPUTES SFC, ESF, AND ENGINE WEIGHT----% %---THIS SECTION COMPUTES POLYNOMIAL CONSTRAINT FUNCTIONS--% Thrust = Y23(1); Dim Throttle = X3(1)*16168.6; %--non-diminsional throttle setting % %-----Surface fit to engine deck (obtained using least squares approx)-----% % Subfunction BB RANGE % % This subfunction calculates the system objective function, range, from the Breguet 0.31623315541888 0.00000410691343 -0.00005248000590 -0.00000000008574 % range equation. 0.00000000190214 0.000000010599511: % Y_3(1)=s(1)+s(2)*Z(3)+s(3)*Z(2)+s(4)*Dim Throttle+s(5)*Z(3)^2+2*Z(2)*Z(3)*s(6) % Author : Jeremy S. Agte NASA Langley/GWU Spring '98 +2*Dim Throttle*Z(3)*s(7)+s(8)*Z(2)^2+2*Dim Throttle*Z(2)*s(9)+s(10)*Dim Th rottle^2; Input Variables - Total aircraft weight % Y14(1) lb Y3(3) = (Thrust/3)/Dim Throttle; Y14(2) - Fuel weight 1h ``` | %
%
%
% | Y24
Y34
Z(1)
Z(2) | Lift-to-drag ratioSpecific fuel consumptionThickness/chord ratioAltitude | none
1/hr
none
ft | %
%
%
% | positive linear (flag | e to changes in other variables. Possible relationsh $g = 1$), negative linear (flag = 3), positive nonlinear (flag = 4), and parabolic (flag = 5). | | |------------------|----------------------------|---|----------------------------|-------------------|-------------------------------|---|--------------| | %
% | Z(3)
Z(4) | - Mach number - Aspect ratio | none
none | %
% | Author | : Jeremy S. Agte NASA Langley/GWU Spr | ring '98 | | %
% | Z(5)
Z(6) | Wing sweepWing surface area | deg
ft ² | %
% | Input Variables flag | : - Indicates functional relationship btwn var. | none | | %
%
% | Output Variables
Y4 | :
- Range | NM | %
%
% | S
S_bound | Vector of initial values of independent
variablesVector of bounds used to control slope of | vary | | %
% | Local Variables | : | 11112 | %
% | S_new | the polynomial function (narrow = high slope - Vector of current values of independent | e) none | | %
% | Theta | - Temperature ratio | none | %
% | | variables | vary | | %- |
action[Y4]=BB_range | (7 V14 V24 V34) | | %
%
% | Output Variables
Ai
Aij | : - Vector of coefficients (2 nd
term) - Matrix of coefficients (3 rd term) | none
none | | | | COMPUTES THE A/C RANGE (Breguet) | % | %
% | Ao
FF | - Scalar coefficient (1 st term) - Value of synthetic variable or modifier | none
none | | | Z(2)<36089 | | | %
% | Local Variables | : | | | else | | *Z(2); | | %
% | A
a | Solution matrix for polynomial fitting eqns. Lower y-axis bound on polynomial | none
none | | enc | theta=.7519; | | | %
%
% | b
F_bound | Upper y-axis bound on polynomial Bounds for dependent variable; RHS of polynomial fitting eqns. | none | | Y4 | (1) = ((Z(3)*Y24(1))* | *661*sqrt(theta)/Y34(1))*log(Y14(1)/(Y14(1)- | -Y14(2))); | %
% | Mtx_shifted R | Matrix for LHS of polynomial fitting eqns. Vector of random constants used to fill off- | none | | %- | THIS SECTION (| COMPUTES THE A/C RANGE% | | %
% | S1 | diagonals of Aij - Standard independent variable lower bound | none
none | | , 0 | | | | %
% | S_norm | - Vector of current values of independent variables normalized by initial values | none | | %
%
% | | Subfunction POLYAPPROX | | %
%
% | So
S_shifted | Standard independent variable midpoint Vector of normalized values of independent
variables shifted to an area near the origin | none | | %
%
% | of certain synthetic | lculates polynomial coefficients to characterize variables and function modifiers. Move limits eted based on knowledge of each variable or modifiers. | for each | %
%
%
%- | Su | - Standard independent variable upper bound | none | ``` b=2*a; function [FF, Ao, Ai, Aij] = PolyApprox(S, S new, flag, S bound) end for i = 1:size(S,2) %DETERMINE BOUNDS ON FF DEPENDING ON SLOPE-SHAPE S norm(i) = S new(i)/S(i); %normalize new S with initial S if S norm(i)>1.25 %CALCULATE POLYNOMIAL COEFFICIENTS (S-ABOUT ORIGIN) S norm(i)=1.25; So=0: Sl=So-S_bound(i); elseif S norm(i)<0.75 Su=So+S bound(i); S norm(i)=0.75; end Mtx shifted = [1 Sl Sl^2; 1 So So^2; 1 Su Su^2]; S_{shifted(i)} = S_{norm(i)} - 1; %shift S vector near origin F bound = [1-.5*a; 1; 1+.5*b]; A = Mtx \text{ shifted}\F \text{ bound}; %DETERMINE BOUNDS ON FF DEPENDING ON SLOPE-SHAPE Ao = A(1); a=0.1: Ai(i) = A(2); b=a: Aij(i,i) = A(3); if flag(i) = 5 %CALCULATE POLYNOMIAL COEFFICIENTS end %CALCULATE POLYNOMIAL COEFFICIENTS (S-ABOUT ORIGIN) end So=0: Sl=So-S bound(i); %FILL UP OFF DIAGONALS OF Aij Su=So+S bound(i); Mtx shifted = [1 Sl Sl^2; 1 So So^2; 1 Su Su^2]; R = [...] F bound = [1+(.5*a)^2; 1; 1+(.5*b)^2]; 0.2736 0.3970 0.8152 0.9230 0.1108 A = Mtx \text{ shifted}\F \text{ bound}; 0.4252 0.4415 0.6357 0.7435 0.1138 Ao = A(1); 0.0329 0.8856 0.8390 0.3657 0.0019 Ai(i) = A(2); 0.0878 0.7248 0.1978 0.0200 0.0169 Aij(i,i) = A(3); 0.8955 0.4568 0.8075 0.9239 0.2525]; %CALCULATE POLYNOMIAL COEFFICIENTS for i = 1:size(S,2) else for i = (i+1):size(S,2) switch (flag(i)) Aij(i,j) = Aij(i,i)*R(i,j); case 0 Aij(j,i) = Aij(i,j); S shifted(i) = 0; end case 3 end a=-a: b=a: %CALCULATE POLYNOMIAL case 2 FF = Ao + Ai*(S_shifted') + (1/2)*(S_shifted)*(Aij)*(S_shifted'); b=2*a: case 4 ``` a=-a; | %- | | | | % | fstore | - Value of objective function for BB1 optim. | NM | |--------|--------------------|---|------------|------------|---------------------|--|---------------| | % | | a | | % | gstore0 | - Vector of local constraint values at beginning | | | % | | Subfunction BB1OPT | | % | T 1 | of BB1 optimization | p.f. | | % | TDI: 1.C .: | | .• | % | Lagrange1 | - Vector of Lagrange multipliers from BB1 at | NTN # | | % | | erves as a shell for the Matlab 'constr' optimization | on routine | % | | optimum | NM | | % | performing a focal | optimization on the WEIGHT module. | | %
% | al Variables | | | | %
% | Author | : Jeremy S. Agte NASA Langley/GWU S | oring '98 | % Loc
% | options | - see Matlab 'constr' function | | | %
% | Author | : Jeremy S. Agte NASA Langley/GWU S | ornig 98 | %
% | vlb | - Non-dimensional lower bounds on BB1 desig | n | | % | Input Variables | | | % | VIU | variables | none | | % | C | - Vector of constants | vary | % | vub | - Non-dimensional upper bounds on BB1 desig | | | % | DY_lamda | - Vector of total derivatives, behavior | vary | % | vuo | variables | none | | % | DY_x | - Vector of total derivatives, behavior | vary | % | x0 | - Vector of non-dimensional starting points | none | | % | D1_X | variables w.r.t wingbox x-section | vary | % | AU | for BB1 optimization | none | | % | i0 | - Design variable initial values | vary | % | | for BBT optimization | none | | % | L_initial | - Initial halfspan length | ft | | ofunctions | : | | | % | Lift_initial | - Initial lift | lb | % | BB1WRAP | PPER - Contains objective function and cons | traints | | % | P_var | - Vector of current design variable values | vary | % | | for BB1 optimization | | | % | R_initial | - Initial location of lift as fraction of halfspan | none | % | constr | - Matlab optimization routine | | | % | tc_initial | - Initial thickness to chord ratio | none | % | | | | | % | Twist_initial | - Initial wing twist | p.f. | % | | | | | % | vlb_nd | - Non-dimensional lower bounds on design | - | | | | | | % | | variables | none | func- | | | | | % | vub_nd | - Non-dimensional upper bounds on design | | tion[dX | 1,Lagrange1,fsto | ore,gstore0]=BB1OPT(vlb_nd,vub_nd,i0,P_var,Z, | Y21,Y31,X1 | | % | | variables | none | x_initia, | al,L_initial,R_ini | itial,Lift_initial,Twist_initial,tc_initial,C,DY_lam | nda,DY_x) | | % | x_initial | - Initial wingbox x-sectional thickness | p.f. | | | | | | % | X1(1) | - Wing taper ratio | none | _ | o_nd(1) vlb_nd(2 | · - · | | | % | X1(2) | - Wingbox x-sectional area as poly. funct. | p.f. | | ıb_nd(1) vub_nd(| | | | % | Y21 | - Lift | lb | | (1)/i0(1)-1,X1(2) |)/i0(2)-1]; | | | % | Y31 | - Engine weight | lb | options(| | | | | % | Z(1) | - Thickness/chord ratio | none | | (2)=.0001; | | | | % | Z(2) | - Altitude | ft | - | (3)=.0001; | | | | % | Z(3) | - Mach number | none | - | (4)=.001; | | | | % | Z(4) | - Aspect ratio | none | - | (14)=1000; | | | | % | Z(5) | - Wing sweep | deg | options(| (17)=.01; | | | | % | Z(6) | - Wing surface area | ft^2 | FC | 0.4774.03 | DD1MD ADDED (0.0 D | T 1 1/1 1 5 | | % | 0 (17 11 | | | | | BB1WRAPPER(x0,i0,P_var,Z,Y21,Y31,x_initial, | ,L_initial,R_ | | % | Output Variables | Vertex of entire 1.1 | | ınıtıal,L | ıπ_ınıtıal, I wıst_ | _initial,tc_initial,C,DY_lamda,DY_x); | | | % | dX1 | Vector of optimal changes in X1 variables | vary | | | | | ``` [x,options,Lagrange1]=constr('BB1WRAPPER',x0,options,vlb,vub,[],i0,P var,Z,Y21, dX1 - Vector of optimal changes in X1 variables vary Y31,x initial,L initial,R initial,Lift initial,Twist initial,tc initial,C,DY lamda,DY % f - Value of objective function for BB1 optim. NM - Vector of local constraint values x); % p.f. g % Local Variables % Sigma uA - Upper allowable limit for stress constraints none % % Twist 1A - Lower allowable limit for twist constraint none % Subfunction BB1WRAPPER Twist uA - Upper allowable limit for twist constraint % none % % % This subfunction computes the objective function and the constraints for the Subfunctions local optimization on the WEIGHT module. % BB_weight -Calculates a/c structural weights % % % Author : Jeremy S. Agte NASA Langley/GWU Spring '98 % % Input Variables func- % - Vector of constants tion[f,g,dX1]=BB1WRAPPER(x,i0,P var,Z,Y21,Y31,x initial,L initial,R initial,Lift \mathbf{C} vary % - Vector of total derivatives, behavior initial, Twist initial, tc initial, C, DY lamda, DY x) DY lamda vary - Vector of total derivatives, behavior % DY x % variables w.r.t wingbox x-section X1=[i0(1)*(1+x(1)),i0(2)*(1+x(2))]; vary % i0 - Design variable initial values vary L initial - Initial halfspan length ft [Y1,Y12,Y14,G1]=BB weight(Z,Y21,Y31,X1,x initial,L initial,R initial,Lift initial - Initial lift ,Twist initial,tc initial,C); % Lift initial lb % - Vector of current design variable values P var vary - Initial location of lift as fraction of halfspan % R initial Sigma uA=1.05; none % tc initial - Initial thickness to chord ratio Twist uA=1.03; none % Twist initial - Initial wing twist p.f. Twist 1A=.97; % - Vector of non-dimensional design variables Х % for BB1 optimization g(1)=G1(1)/Sigma uA-1; none % - Initial wingbox x-sectional thickness g(2)=G1(2)/Sigma uA-1; x initial p.f. % Y21 - Lift lb g(3)=G1(3)/Sigma uA-1; % Y31 - Engine weight 1b g(3)=G1(4)/Sigma uA-1; - Thickness/chord ratio % Z(1) g(5)=G1(5)/Sigma uA-1; none g(6)=G1(6)/Twist uA-1; - Altitude % Z(2) ft % - Mach number Z(3) g(7)=Twist 1A/G1(6)-1; none - Aspect ratio % Z(4) none % Z(5) - Wing sweep dX1=[X1(1)-P \ var(1) \ X1(2)-P \ var(2)]; deg % - Wing surface area ft^2 Z(6) f=-([DY lamda(10),DY x(10)]*dX1'); % Output Variables ``` | %- | | | | % | | | | | |----|--------------------|---|------------------------|-----|-------------------------|------------|---|------------------| | % | | | | % | Local Variables | : | | | | % | | Subfunction BB2OPT | | % | options | - see l | Matlab 'constr' function | | | % | | | | % | vlb | - Non | -dimensional lower bounds on BB2 de | sign | | % | This subfunction s | erves as a shell for the Matlab 'constr' optimization | on routine | % | | vari | iables | none | | % | performing a local | optimization on the DRAGPOLAR module. | | % | vub | - Non | -dimensional upper bounds on BB2 de | sign | | % | | | | % | | vari | iables | none | | % | Author | : Jeremy S. Agte NASA Langley/GWU S | pring '98 | % | x0 | - Vect | tor of non-dimensional starting points | | | % | | | | % | | for 1 | BB2 optimization | none | | % | Input Variables | : | | % | | | | | | % | C | - Vector of constants | vary | %
| Subfunctions | : | | | | % | Cf_initial | - Initial coefficient of friction | p.f. | % | BB2WRA | PPER | - Contains objective function and co | onstraints | | % | DY_Cf | - Vector of total derivatives, behavior | | % | | | for BB2 optimization | | | % | | variables w.r.t skin friction coefficient | vary | % | constr | | Matlab optimization routine | | | % | ESF_initial | - Initial engine scale factor | none | % | | | | | | % | i0 | - Design variable initial values | vary | % | | | | | | % | P_var | - Vector of current design variable values | vary | | | | | | | % | tc_initial | - Initial thickness to chord ratio | none | fu | nc- | | | | | % | Twist_initial | - Initial wing twist | p.f. | | | | 2OPT(vlb_nd,vub_nd,i0,P_var,Z,Y12, | Y32,X2,ESF_in | | % | vlb_nd | - Non-dimensional lower bounds on design | | iti | al,Cf_initial,Twist_in | itial,tc_i | nitial,C,DY_Cf) | | | % | | variables | none | | | | | | | % | vub_nd | - Non-dimensional upper bounds on design | | | b=[vlb_nd(3)]; | | | | | % | | variables | none | vu | b=[vub_nd(3)]; | | | | | % | X2 | - Coefficient of friction | p.f. | xC | =[X2(1)/i0(3)-1]; | | | | | % | Y12(1) | - Total aircraft weight | lb | | tions(1)=1; | | | | | % | Y12(2) | - Wing twist | p.f. | - | tions(2)=.0001; | | | | | % | Y32 | - Engine scale factor | none | - | tions(3)=.0001; | | | | | % | Z(1) | - Thickness/chord ratio | none | - | tions(4) = .001; | | | | | % | Z(2) | - Altitude | ft | - | tions(14)=1000; | | | | | % | Z(3) | - Mach number | none | op | tions(17)=.01; | | | | | % | Z(4) | - Aspect ratio | none | | | | | | | % | Z(5) | - Wing sweep | deg
ft ² | | | | BB2WRAPPER',x0,options,vlb,vub,[],io | 0,P_var,Z,Y12, | | % | Z(6) | - Wing surface area | ft ² | Y. | 32,ESF_initial,Cf_ini | tial,Twis | t_initial,tc_initial,C,DY_Cf); | | | % | | | | | | | | | | % | Output Variables | : | | | | | PER(x,i0,P_var,Z,Y12,Y32,ESF_initia | l,Cf_initial,Twi | | % | dX2 | - Vector of optimal changes in X2 variables | vary | st_ | _initial,tc_initial,C,D | Y_Cf); | | | | % | fstore | - Value of objective function for BB2 optim. | NM | | | | | | | % | Lagrange2 | - Vector of Lagrange multipliers from BB2 at | | | | | | | | % | | optimum | NM | | | | | | | %- | | | | - % | | | | | |----|--------------------|--|------------|----------|---|--------------------------|----------------------------|--------------------| | % | | | | % | Subfunctions | : | | | | % | | Subfunction BB2WRAPPER | | % | BB_drag | polar -Calcula | ites aerodynamic values | | | % | | | | % | | <u>.</u> | · | | | % | This subfunction c | omputes the objective function and the constrain | ts for the | % | | | | | | % | | on the DRAGPOLAR module. | | | | | | | | % | 1 | | | func | - | | | | | % | Author | : Jeremy S. Agte NASA Langley/GWU S | Spring '98 | tion[| [f,g,dX2]=BB2WR | RAPPER(x,i0,P_var,Z | ,Y12,Y32,ESF_initial,Cf_ | _initial,Twist_ini | | % | | | | | c_initial,C,DY_C | | | | | % | Input Variables | : | | | | • | | | | % | C | - Vector of constants | vary | X2= | [i0(3)*(1+x(1))]; | | | | | % | Cf_initial | - Initial coefficient of friction | p.f. | | - , , , , , , , , , , , , , , , , , , , | | | | | % | DY_Cf | - Vector of total derivatives, behavior | • | [Y2, | Y21, Y23, Y24, G2 | =BB dragpolar(Z,Y) | 12,Y32,X2,ESF_initial,Cf | initial, Twist in | | % | _ | variables w.r.t skin friction coefficient | vary | | tc_initial,C); | | , , , _ , , | _ | | % | ESF_initial | - Initial engine scale factor | none | | _ | | | | | % | i0 | - Design variable initial values | vary | Pg t | ıA=1.04; | | | | | % | P_var | - Vector of current design variable values | vary | <u> </u> | =G2(1)/Pg_uA-1; | | | | | % | tc_initial | - Initial thickness to chord ratio | none | | () &= | | | | | % | Twist_initial | - Initial wing twist | p.f. | | | | | | | % | _ X | - Vector of non-dimensional design variables | | dX2 | $=[X2(1)-P_var(3)]$ | l : | | | | % | | for BB2 optimization | none | | DY_Cf(10)]*dX2 | | | | | % | Y12(1) | - Total aircraft weight | lb | ν. | _ | ,, | | | | % | Y12(2) | - Wing twist | p.f. | | | | | | | % | Y32 | - Engine scale factor | none | % | | | | | | % | Z(1) | - Thickness/chord ratio | none | % | | | | | | % | Z(2) | - Altitude | ft | % | | Subfunction BB3 | OPT | | | % | Z(3) | - Mach number | none | % | | | | | | % | Z(4) | - Aspect ratio | none | % | This subfunction s | serves as a shell for th | ne Matlab 'constr' optimiz | ation routine | | % | Z(5) | - Wing sweep | deg | | | l optimization on the | | | | % | Z(6) | - Wing surface area | ft^2 | % | | • | | | | % | . , | <u> </u> | | % | Author | : Jeremy S. Agte | NASA Langley/GWU | Spring '98 | | % | Output Variables | : | | % | | • | | 1 0 | | % | dX2 | - Vector of optimal changes in X2 variables | vary | % | Input Variables | : | | | | % | f | - Value of objective function for BB2 optim. | NM | % | C | - Vector of consta | ants | vary | | % | g | - Vector of local constraint values | p.f. | % | DY_T | - Vector of total of | derivatives, behavior | • | | % | Ç | | • | % | _ - | variables w.r.t tl | | vary | | % | Local Variables | : | | % | h_initial | - Initial altitude | | ft | | % | Pg_uA | - Upper allowable limit on pressure gradient | | % | i0 | - Design variable | initial values | vary | | % | - | constraint | none | % | M_initial | - Initial Mach nu | | none | | | | | | | | | | | | T_initial | % | P_var | - Vector of current design variable values | vary | fun- | |--|-----|---|--|---------|--| | | % | T_initial | - Initial throttle setting | none | | | vub_nd variables none vary | % | vlb_nd | | | nitial,h_initial,T_initial,C,DY_T) | | | | | | none | | | National Provides setting None | | vub_nd | | | | | Second Paragorial Programment Second Programmen | | | | none | = - 1,7= | | Second | % | | | | | | Second Processing Pro | % | | | lb | | | Mach number none options(4)=.001; | % | | - Thickness/chord ratio | none | options(2)=.0001; | | Second Process of State o | % | Z(2) | - Altitude | ft | options(3)=.0001; | | Wing sweep deg | % | Z(3) | - Mach number | none | options(4)=.001; | | Wing surface area ft² | % | Z(4) | - Aspect ratio | none | options(14)=1000; | | Output Variables : [fstore0,gstore0,dX30]=BB3WRAPPER(x0,i0,P_var,Z,Y23,M_initial,h_initial,T_initial,C,DY_T); \[\text{dX3} \] - Vector of optimal changes in X3 variables vary \\ fstore vary | % | Z(5) | - Wing sweep | deg | options(17)=.01; | | W Output Variables:al,C,DY_T);% dX3- Vector of optimal changes in X3 variables varyvary% fstore- Value of objective function for BB3 optim. NM% gstore0- Vector of local constraint values at beginning of BB3 optimization[x,options,Lagrange3]=constr('BB3WRAPPER',x0,options,vlb,vub,[],i0,P_var,Z,Y23, M_initial,P_initial,T_initial,C,DY_T);% Lagrange3- Vector of Lagrange multipliers from BB3 at optimumNM[fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,h_initial,T_initial,C,DY_T);% Local Variables:% options- see Matlab 'constr' function% vlb- Non-dimensional lower bounds on BB3 design variables% vub- Non-dimensional upper bounds on BB3 design variables% x0- Vector of non-dimensional starting points for BB3 optimization%% This subfunction computes the objective function and the constraints for the for BB3 optimization%. | % | Z(6) | - Wing surface area | ft^2 | | | Section of optimal changes in X3 variables Value of objective function for BB3 optim. NM | % | | | | [fstore0,gstore0,dX30]=BB3WRAPPER(x0,i0,P_var,Z,Y23,M_initial,h_initial,T_initi | | fstore - Value of objective function for BB3 optim. NM gstore0 - Vector of local constraint values at beginning of BB3 optimization p.f. Lagrange3 - Vector of Lagrange
multipliers from BB3 at optimum NM Local Variables options - see Matlab 'constr' function vlb - Non-dimensional lower bounds on BB3 design variables none vub - Non-dimensional upper bounds on BB3 design variables none | % | Output Variables | : | | al,C,DY_T); | | yestore0 - Vector of local constraint values at beginning of BB3 optimization p.f. Lagrange3 - Vector of Lagrange multipliers from BB3 at optimum NM [fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,T_initial,C,DY_T); Local Variables : yestore0 - Vector of Lagrange multipliers from BB3 at optimum NM [fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,T_initial,C,DY_T); Local Variables : yestore0 - Vector of Lagrange multipliers from BB3 at optimum NM [fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,T_initial,C,DY_T); Local Variables : yestore0 - Vector of non-dimensional lower bB3 at optimization none with substituting points of BB3 optimization none with substitution on the POWER module. | % | dX3 | - Vector of optimal changes in X3 variables | vary | | | yestore0 - Vector of local constraint values at beginning of BB3 optimization p.f. Lagrange3 - Vector of Lagrange multipliers from BB3 at optimum NM [fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,T_initial,C,DY_T); Local Variables : yestore0 - Vector of Lagrange multipliers from BB3 at optimum NM [fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,T_initial,C,DY_T); Local Variables : yestore0 - Vector of Lagrange multipliers from BB3 at optimum NM [fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,T_initial,C,DY_T); Local Variables : yestore0 - Vector of non-dimensional lower bB3 at optimization none with substituting points of BB3 optimization none with substitution on the POWER module. | % | fstore | - Value of objective function for BB3 optim. | NM | | | of BB3 optimization p.f. M_initial,h_initial,T_initial,C,DY_T); Lagrange3 - Vector of Lagrange multipliers from BB3 at optimum NM [fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,h_initial,T_initial,C,DY_T); Local Variables : options - see Matlab 'constr' function vib - Non-dimensional lower bounds on BB3 design variables none variables none variables none xuriables xuriabl | % | gstore0 | | | [x,options,Lagrange3]=constr('BB3WRAPPER',x0,options,vlb,vub,[],i0,P_var,Z,Y23, | | Lagrange3 - Vector of Lagrange multipliers from BB3 at optimum | % | | | p.f. | | | %optimumNM[fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,h_initial,T_initial,C, DY_T);%Local Variables:%options- see Matlab 'constr' function%vlb- Non-dimensional lower bounds on BB3 design variables% | % | Lagrange3 | - Vector of Lagrange multipliers from BB3 at | • | | | DY_T); | % | | | NM | [fstore,gstore,dX3]=BB3WRAPPER(x,i0,P_var,Z,Y23,M_initial,h_initial,T_initial,C, | | Local Variables options see Matlab 'constr' function vlb Non-dimensional lower bounds on BB3 design variables vub Non-dimensional upper bounds on BB3 design variables none variables variable | % | | • | | | | % vlb - Non-dimensional lower bounds on BB3 design % % variables none % % vub - Non-dimensional upper bounds on BB3 design % Subfunction BB3WRAPPER % variables none % % x0 - Vector of non-dimensional starting points % This subfunction computes the objective function and the constraints for the for BB3 optimization % local optimization on the POWER module. | % | Local Variables | : | | - // | | % vlb - Non-dimensional lower bounds on BB3 design % % variables none % % vub - Non-dimensional upper bounds on BB3 design % Subfunction BB3WRAPPER % variables none % % x0 - Vector of non-dimensional starting points % This subfunction computes the objective function and the constraints for the for BB3 optimization % local optimization on the POWER module. | % | options | - see Matlab 'constr' function | | | | %variablesnone%%vub- Non-dimensional upper bounds on BB3 design%Subfunction BB3WRAPPER%variablesnone%%x0- Vector of non-dimensional starting points%This subfunction computes the objective function and the constraints for the%for BB3 optimizationnone%local optimization on the POWER module. | | - | | 1 | % | | %vub- Non-dimensional upper bounds on BB3 design%Subfunction BB3WRAPPER%variablesnone%%x0- Vector of non-dimensional starting points%This subfunction computes the objective function and the constraints for the local optimization on the POWER module. | | | | | % | | %variablesnone%%x0- Vector of non-dimensional starting points%This subfunction computes the objective function and the constraints for the%for BB3 optimizationnone%local optimization on the POWER module. | % | vub | - Non-dimensional upper bounds on BB3 design | 1 | % Subfunction BB3WRAPPER | | x0 Vector of non-dimensional starting points for BB3 optimization y This subfunction computes the objective function and the constraints for the local optimization on the POWER module. | | | | | | | % for BB3 optimization none % local optimization on the POWER module. | % | x0 | | | % This subfunction computes the objective function and the constraints for the | | · | | | | none | | | | | | r | | • | | % Subfunctions : | | Subfunctions | : | | | | % BB3WRAPPER - Contains objective function and constraints % | | | PPER - Contains objective function and cons | traints | | | % for BB3 optimization % Input Variables : | | | | | | | % constr - Matlab optimization routine % C - Vector of constants vary | | constr | | | • | | % DY_T - Vector of total derivatives, behavior | | • | | | · · | | % % variables w.r.t throttle setting vary | %- | | | | | | % h_initial - Initial altitude ft | , • | | | | · · · · · · · · · · · · · · · · · · · | ``` % i0 - Design variable initial values Temp uA=1.02; vary M initial - Initial Mach number none - Vector of current design variable values % P var g(1)=G3(1)/ESF uA-1; vary - Initial throttle setting g(2)=ESF 1A/G3(1)-1; T initial none - Vector of non-dimensional design variables % g(3)=G3(2)/Temp uA-1; X % for BB3 optimization g(4)=G3(3); none % Y23 - Drag lb dX3=[X3(1)-P \ var(4)]; % - Thickness/chord ratio Z(1) f=-([DY_T(10)]*dX3); none % Z(2) - Altitude ft % Z(3) - Mach number none % Z(4) - Aspect ratio none % - Wing sweep % Z(5) deg - Wing surface area ft^2 % Z(6) % Subfunction SYSOPT % % % Output Variables % This subfunction serves as a shell for the Matlab 'constr' optimization routine % dX3 - Vector of optimal changes in X3 variables % performing a system optimization. vary % - Value of objective function for BB3 optim. NM f % - Vector of local constraint values % p.f. % Author : Jeremy S. Agte NASA Langley/GWU Spring '98 % % Local Variables Input Variables % ESF 1A - Lower allowable limit for ESF constraint % dg2_Z - Derivative of BB2 constraint wrt Z p.f. none - Upper allowable limit for ESF constraint G2 % ESF uA % - Pressure gradient p.f. none % Temp_uA - Upper allowable limit for temp. constraint % GRADphi4_Z - Vector of total derivatives at the optimal none state, range w.r.t Z variables % % vary i0 - Design variable initial values % Subfunctions % vary - Vector of current design variable values % BB power -Calculates propulsion values % P var vary % - Non-dimensional lower bounds on design % vlb nd % variables none % - Non-dimensional upper bounds on design vub nd func- % variables none tion[f,g,dX3]=BB3WRAPPER(x,i0,P var,Z,Y23,M initial,h initial,T initial,C,DY % Y4 - Range NM - Thickness/chord ratio T) % Z(1) none - Altitude % Z(2) ft - Mach number X3=[i0(4)*(1+x(1))]; Z(3) none Z(4) - Aspect ratio none [Y3,Y34,Y31,Y32,G3]=BB_power(Z,Y23,X3,M_initial,h_initial,T_initial,C); Z(5) - Wing sweep deg - Wing surface area ft^2 % Z(6) % ESF uA=1.5; ESF 1A=.5; Output Variables ``` | %
%
%
% | dZ
fstore
gstore0 | Vector of optimal changes in Z variables Value of objective function for system optime Vector of constraint values at beginning of system optimization | vary
n. NM
vary | $[fstore,gstore,dZ] = SysWRAPPER(x,i0,P_var,Y4,GRADphi4_Z,dg2_Z,G2); \\$ | | | | | |------------------|------------------------------|--|-----------------------|---|---------------------|----------------------|------------------------------|------------| | % | | | | %- | | | | | | % | Local Variables | : | | % | | | | | | % | options | - see Matlab 'constr' function | | % | | Subfunction SYS | WRAPPER | | | % | vlb | - Non-dimensional lower bounds on Z | | % | | | | | | % | | variables | none | % | This subfunction co | mputes the objective | e function and constraints f | for the | | % | vub | - Non-dimensional upper bounds on Z | | % | system optimization | 1. | | | | % | | variables | none | % | | | | | | % | x0 | - Vector of non-dimensional starting points | | % | Author | : Jeremy S. Agte | NASA Langley/GWU | Spring '98 | | % | | for system optimization | none | % | | | | | | % | | | | % | Input Variables | : | | | | % | Subfunctions | : | | % | dg2_Z | - Derivative of B | B2 constraint wrt Z | p.f. | | % | SysWRAP | PER - Contains objective function and con | nstraints | % | G2 | - Pressure gradie | nt | p.f. | | % | - | for system optimization | | % | GRADphi4_Z | - Vector of total of | derivatives at the optimal | _ | | % | constr | - Matlab optimization routine | | % | • | state, range w.r. | t Z variables | vary | | % | | - | | % | i0 | - Design variable | initial values | vary | | %- | | | | % | P_var | - Vector of curren | nt design variable values | vary | | | | | | % | X | - Vector of non-d | imensional design variable | es | | fun | ıc- |
| | % | | for system optin | mization | none | | tio | n{dZ,fstore,gstore0]= | SysOPT(vlb_nd,vub_nd,i0,P_var,Y4,GRADphi4 | 4_Z,Z,dg2_Z, | % | Y4 | - Range | | NM | | G2 | | • • • • • • • • • • • • | | % | Z(1) | - Thickness/chore | d ratio | none | | | , | | | % | Z(2) | - Altitude | | ft | | vlb | $=[vlb_nd(5:10)];$ | | | % | Z(3) | - Mach number | | none | | vul | p=[vub_nd(5:10)]; | | | % | Z(4) | - Aspect ratio | | none | | x0= | =[Z(1)/iO(5)-1,Z(2)/iO(5)-1] | 0(6)-1,Z(3)/i0(7)-1,Z(4)/i0(8)-1,Z(5)/i0(9)-1,Z(6) |)/i0(10)-1]; | % | Z(5) | - Wing sweep | | deg | | opt | ions(1)=1; | | | % | Z(6) | - Wing surface as | rea | ft^2 | | - | ions(2) = .0001; | | | % | | • | | | | | ions(3) = .0001; | | | % | Output Variables | : | | | | - | ions(4) = .001; | | | % | dZ | - Vector of optim | al changes in Z variables | vary | | - | ions(14)=1000; | | | % | f | | ve function for system opti- | m. NM | | - | ions(17)=.01; | | | % | g | - Vector of constr | | vary | | 1 | . , , | | | % | C | | | , | | [fst | tore0,gstore0,dZ0]=S | ysWRAPPER(x0,i0,P_var,Y4,GRADphi4_Z,dg2 | 2 Z,G2); | % | Local Variables | : | | | | | ,,, | , | _ , ,, | % | a | - Used to constru | ct move limits | none | | [x] | =constr('SysWRAPP | ER',x0,options,vlb,vub,[],i0,P_var,Y4,GRADphi | 4 Z,dg2 Z,G | % | Pg_uA | | e limit on pressure gradient | | | 2); | ` ' | | _ / 6 _ / - | % | <u>U</u> — | constraint | 1 5 | none | | % | % | vub | - Non-dimension | al upper bounds on BB1 o | design | |--|--------------------------|--|--|----------------------------|------------------------------| | % | % | | variables | | none | | | % | x0 | - Vector of non-d | imensional starting point | S | | function[f,g,dZ]=SysWRAPPER(x,i0,P_var,Y4,GRADphi4_Z,dg2_Z,G2) | % | | for BB1 optimi | zation | none | | | % | | | | | | Z = [i0(5)*(1+x(1)), i0(6)*(1+x(2)), i0(7)*(1+x(3)), i0(8)*(1+x(4)), | % Outp | out Variables | : | | | | i0(9)*(1+x(5)), i0(10)*(1+x(6))]; | % | vlb_nd | | al lower bounds on design | 1 | | | % | | variables | | none | | $dZ = [Z(1)-P_var(5) Z(2)-P_var(6) Z(3)-P_var(7) Z(4)-P_var(8) Z(5)-P_var(9) Z(6)-P_var(9) Z(6)-P_v$ | | vub_nd | | al upper bounds on design | n | | P_var(10)]'; | % | | variables | | none | | | % | | | | | | a=.2; | % | | | | | | Pg_uA=1.04; | | | | | | | $G2(1)=G2(1)/Pg_uA-1;$ | function[| vlb_nd,vub_nd | d]=INbounds(x0,vlb, | vub) | | | $g(1)=G2(1) + dg2_Z(1,1)*dZ(1);$ | vlb_nd=[| vlb(1)/x0(1)-1 | .vlb(2)/x0(2)-1.vlb(3 |)/x0(3)-1,vlb(4)/x0(4)-1,v | /lb(5)/x0(5)- | | g(2)=abs(dZ(1))/(a*i0(5))-1; | | | | -1,vlb(9)/x0(9)-1,vlb(10)/ | | | g(3)=abs(dZ(2))/(a*i0(6))-1; | | | | (3)/x0(3)-1,vub(4)/x0(4)- | . , =- | | g(4)=abs(dZ(3))/(a*i0(7))-1; | | | | 3)-1,vub(9)/x0(9)-1,vub(1 | | | g(5)=abs(dZ(4))/(a*i0(8))-1; | , , , | | | | , , , ,, | | g(6)=abs(dZ(5))/(a*i0(9))-1; | | | | | | | g(7)=abs(dZ(6))/(a*i0(10))-1; | % | | | | | | | % | | | | | | | % | | Subfunc | tion FIN_DIFF | | | $f = -(Y4(1) + GRADphi4_Z*dZ);$ | % | | | | | | | % This | subfunction ca | alls several subfuncti | ons that use one-step forv | ward finite | | | % differ | rencing to calc | culate the derivatives | required by the BLISS m | ethod. | | % | % | | | | | | % | % | Author | : Jeremy S. Agte | NASA Langley/GWU | Spring '98 | | % Subfunction INBOUNDS | % | | | | | | % | % Input | | | | | | % This subfunction calculates the non-dimensional upper and lower bounds of the | | C | - Vector of consta | | vary | | % design variables. | | | | | | | | | Cf_initial | - Initial coefficier | | p.f. | | % | %] | ESF_initial | - Initial engine so | | none | | % Author : Jeremy S. Agte NASA Langley/GWU Spring '98 | %]
% | ESF_initial
G1(1) | Initial engine soStress on wing | | none p.f. | | % Author : Jeremy S. Agte NASA Langley/GWU Spring '98 % | % I
% 0 | ESF_initial
G1(1)
G1(2) | Initial engine soStress on wingStress on wing | | none
p.f.
p.f. | | % Author : Jeremy S. Agte NASA Langley/GWU Spring '98 % Input Variables : | % 0
% 0
% 0 | ESF_initial
G1(1)
G1(2)
G1(3) | Initial engine soStress on wingStress on wingStress on wing | | none
p.f.
p.f.
p.f. | | % Author : Jeremy S. Agte NASA Langley/GWU Spring '98 % | % (
% (
% (
% (| ESF_initial
G1(1)
G1(2) | Initial engine soStress on wingStress on wing | | none
p.f.
p.f. | | % G2 - Pressure gradient p.f. % Z(3) - Mach number none % G3(1) - Engine scale factor constraint none % Z(4) - Aspect ratio none % G3(3) - Throttle setting constraint none % Z(5) - Wing sweep deg % Limital Initial altitude It % Z(5) - Wing sweep deg % Limital Initial altitude It % Output Initial Initial altitude It % Output Initial Initial Minds number none % dg1 Z - Vector of derivatives, BBI constaints vary % R initial Initial docation of lift as fraction of halfspan none % dg2 Z - Vector of derivatives, BBI constaints vary % T, initial Initial wing twist p.f. % dg2 Z - Vector of derivatives, BB2 constaints % Y1(1) - Total aircraft weight lb % dg1 YEI< | % | G1(6) | - Wing twist as constraint | p.f. | % | Z(2) | - Altitude | ft | |--|---|---------------|--|------|---|------------|---|------------| | 6% G3(2) - Engine temperature p.f. % Z(5) - Wing sweep deg % G3(3) - Throttle setting constraint none % Z(6) - Wing surface area ft² % L_initial - Initial altitude ft % Output: % Lift, initial - Initial altitude ft % Output: % Lift, initial - Initial altitude ft % Output: % Lift, initial - Initial altitude none % dgl_Z - Vector of derivatives, BBI constaints vary %
Linitial - Initial initial kinder wish none % dg2_Z - Vector of derivatives, BB2 constaints vary % Tyinitial - Initial wing twist p.f. % dg3_Z - Vector of derivatives, BB2 constaints vary % Y1(1) - Total aircraft weight lb % dg1_YEI - Vector of derivatives, BB1 constaints % Y1(2) - Fucl weight lb % | % | G2 | - Pressure gradient | p.f. | % | Z(3) | - Mach number | none | | G3(3) Throttle setting constraint none % Z(6) -Wing surface area ft² | % | G3(1) | - Engine scale factor constraint | none | % | Z(4) | - Aspect ratio | none | | | % | G3(2) | - Engine temperature | p.f. | % | Z(5) | - Wing sweep | deg | | Linitial Initial halfspan length ft ft ft ft ft ft ft | % | G3(3) | - Throttle setting constraint | none | % | Z(6) | - Wing surface area | ft^2 | | Lift_initial Initial lift Initial lift Initial Mach number none M_initial Initial Mach number none M_initial Initial Mach number none M_initial Initial Initial Mach number none M_initial Initial Ini | % | h_initial | - Initial altitude | ft | % | | - | | | Lift_initial Initial lift Initial Mach number none M_initial Initial Initial Mach number none M_initial Initial I | % | L_initial | - Initial halfspan length | ft | % | Output: | | | | R_initial - Initial llocation of lift as fraction of halfspan none % w.r.t.Z variables vary | % | Lift_initial | | lb | % | A | - Coefficient matrix in GSE | none | | R_initial - Initial llocation of lift as fraction of halfspan none % w.r.t.Z variables vary | % | M_initial | - Initial Mach number | none | % | dg1_Z | - Vector of derivatives, BB1 constaints | | | % tc_initial - Initial thickness to chord ratio none % dg2_Z - Vector of derivatives, BB2 constaints vary % T_initial - Initial throttle setting none % dg3_Z - Vector of derivatives, BB3 constaints vary % Twist_initial - Initial wing twist p.f. % dg3_Z - Vector of derivatives, BB3 constaints vary % X1(1) - Total aircraft weight lb % dg1_YE1 - Vector of derivatives, BB1 constaints vary % Y1(2) - Fuel weight lb % dg2_YE2 - Vector of derivatives, BB1 constaints vary % Y1(2) - Fuel weight lb % dg2_YE2 - Vector of derivatives, BB2 constaints vary % Y1(2) - Wing twist p.f. % dg2_YE2 - Vector of derivatives, BB3 constaints vary % Y12(1) - Total aircraft weight lb % dg3_YE3 - Vector of derivatives, BB3 constaints vary % Y14(2) - Fuel weight | % | R_initial | - Initial location of lift as fraction of halfspan | none | % | • | w.r.t Z variables | vary | | T_initial -Initial wing twist box x-sectional thickness -p.f. % dg1_YE1 -Vector of derivatives, BB1 constaints vary | % | tc_initial | - Initial thickness to chord ratio | none | % | $dg2_Z$ | - Vector of derivatives, BB2 constaints | · | | % Twist_initial - Initial wing twist p.f. % dg3_Z - Vector of derivatives, BB3 constaints vary % x_initial - Initial wingbox x-sectional thickness p.f. % dg1_YE1 - Vector of derivatives, BB1 constaints % Y1(2) - Fuel weight lb % dg2_YE2 - Vector of derivatives, BB2 constaints % Y1(3) - Wing twist p.f. % dg2_YE2 - Vector of derivatives, BB2 constaints % Y12(1) - Total aircraft weight lb % dg3_YE3 - Vector of derivatives, BB2 constaints % Y12(2) - Wing twist p.f. % dg3_YE3 - Vector of derivatives, BB3 constaints % Y12(2) - Wing twist p.f. % dg3_YE3 - Vector of derivatives, BB3 constaints % Y12(1) - Total aircraft weight lb % dY_AR - Vector of derivatives, BB3 constaints vary % Y14(1) - Total aircraft weight lb % dY_AR - Vector of partial derivatives, belavior | % | T_initial | - Initial throttle setting | none | | 0 – | | vary | | % x_initial - Initial wingbox x-sectional thickness p.f. % w.r.t Z variables vary % Y1(1) - Total aircraft weight lb % dg1_YE1 - Vector of derivatives, BB1 constaints % Y1(2) - Fuel weight lb % dg2_YE2 - Vector of derivatives, BB2 constaints % Y12(1) - Total aircraft weight lb % dg3_YE3 - Vector of derivatives, BB3 constaints vary % Y12(1) - Total aircraft weight lb % dg3_YE3 - Vector of derivatives, BB3 constaints vary % Y12(2) - Wing twist p.f. % dg3_YE3 - Vector of derivatives, BB2 constaints vary % Y12(2) - Wing twist p.f. % dg3_YE3 - Vector of derivatives, BB2 constaints vary % Y12(2) - Wing twist p.f. % dg3_YE3 - Vector of derivatives, BB2 constaints vary % Y14(1) - Total aircraft weight lb % dy3_AR - Vector of parti | % | Twist initial | | p.f. | % | dg3 Z | - Vector of derivatives, BB3 constaints | · | | % Y1(1) - Total aircraft weight lb % dg1_YE1 - Vector of derivatives, BB1 constaints % Y1(2) - Fuel weight lb % dg2_YE2 - Vector of derivatives, BB2 constaints % Y12(1) - Total aircraft weight lb % dg2_YE2 - Vector of derivatives, BB2 constaints % Y12(1) - Total aircraft weight lb % dg3_YE3 - Vector of derivatives, BB2 constaints % Y12(2) - Wing twist p.f. % dg3_YE3 - Vector of derivatives, BB2 constaints % Y14(1) - Total aircraft weight lb % dg3_YE3 - Vector of derivatives, BB3 constaints % Y14(2) - Fuel weight lb % dY2_AR - Vector of partial derivatives, behavior % Y2(1) - Lift lb % dY_Cf - Vector of partial derivatives, behavior % Y2(2) - Drag lb % dY_Lamda - Vector of partial derivatives, behavior % Y23 - Drag lb <td>%</td> <td></td> <td></td> <td></td> <td></td> <td><i>e</i> –</td> <td></td> <td>vary</td> | % | | | | | <i>e</i> – | | vary | | %Y1(2)- Fuel weightlb%dg2_YE2- Vector of derivatives, BB2 constaints%Y1(3)- Wing twistp.f.%dg2_YE2- Vector of derivatives, BB2 constaints%Y12(1)- Total aircraft weightlb%w.r.t Y variables entering BB2vary%Y12(2)- Wing twistp.f.%dg3_YE3- Vector of derivatives, BB3 constaints%Y14(1)- Total aircraft weightlb%dY_AR- Vector of partial derivatives, behavior%Y14(2)- Fuel weightlb%dY_AR- Vector of partial derivatives, behavior%Y2(1)- Liftlb%dY_Cf- Vector of partial derivatives, behavior%Y2(2)- Draglb%dY_h- Vector of partial derivatives, behavior%Y2(2)- Lift-d-drag rationone%dY_h- Vector of partial derivatives, behavior%Y21- Liftlb%dY_h- Vector of partial derivatives, behavior%Y23- Draglb%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumptionl/hr%dY_Lamda- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(2)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y3(2)- Engine scale factor </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>dg1 YE1</td> <td>- Vector of derivatives, BB1 constaints</td> <td>J</td> | | | | | | dg1 YE1 | - Vector of derivatives, BB1 constaints | J | | %Y1(3)- Wing twistp.f.%dg2_YE2- Vector of derivatives, BB2 constaints%Y12(1)- Total aircraft weightlb%wr.t Y variables entering BB2vary%Y12(2)- Wing twistp.f.%dg3_YE3- Vector of derivatives, BB3 constaints%Y14(1)- Total aircraft weightlb%dY_AR- Vector of partial derivatives, behavior%Y14(2)- Fuel weightlb%dY_AR- Vector of partial derivatives, behavior%Y2(1)- Liftlb%dY_Cf- Vector of partial derivatives, behavior%Y2(2)- Draglb%dY_Cf- Vector of partial derivatives, behavior%Y2(3)- Lift-to-drag rationone%dY_A- Vector of partial derivatives, behavior%Y23- Draglb%dY_A- Vector of partial derivatives, behavior%Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%dY_lamda- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornonewariables w.r.t wing sweepvary%Y3(2)- Engine scale factornonewariables w.r.t wing surface areavary%Y3(2)- Engine scale factornone< | % | , , | <u>e</u> | lb | | <i>e</i> – | | vary | | %Y12(1)- Total aircraft weightlb%w.r.t Y variables entering BB2vary%Y12(2)- Wing twistp.f.%dg3_YE3- Vector of derivatives, BB3 constaints%Y14(1)- Total aircraft weightlb%w.r.t Y variables entering BB3vary%Y14(2)- Fuel weightlb%dY_AR- Vector of partial derivatives, behavior%Y2(1)- Liftlb%dY_Cf- Vector of partial derivatives, behavior%Y2(2)- Draglb%dY_Cf- Vector of partial derivatives, behavior%Y2(3)- Lift-to-drag rationone%dY_h- Vector of partial derivatives, behavior%Y23- Draglb%dY_Lamda- Vector of partial derivatives, behavior%Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%dY_lamda- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y34- | | | | p.f. | | dg2 YE2 | | J | | %Y12(2)- Wing twistp.f.%dg3_YE3- Vector of derivatives, BB3 constaints%Y14(1)- Total aircraft weightlb%dY_AR- Vector of partial derivatives, behavior%Y14(2)- Fuel weightlb%dY_AR- Vector of partial derivatives, behavior%Y2(1)- Liftlb%dY_Cf- Vector of partial derivatives, behavior%Y2(2)- Draglb%dY_Cf- Vector of partial derivatives, behavior%Y2(3)- Lift-to-drag rationone%dY_h- Vector of partial derivatives, behavior%Y21- Liftlb%dY_Landa- Vector of partial derivatives, behavior%Y23- Draglb%dY_Landa- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%dY_Landa- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_landa- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_T- Vector of partial derivatives, behavior% <td>%</td> <td>, ,</td> <td></td> <td></td> <td></td> <td><i>e</i> –</td> <td></td> <td>vary</td> | % | , , | | | | <i>e</i> – | | vary | | %Y14(1)- Total aircraft weightlb%w.r.t Y variables entering BB3vary%Y14(2)- Fuel weightlb%dY_AR- Vector of partial derivatives, behavior%Y2(1)- Liftlb%dY_Cf- Vector of partial derivatives, behavior%Y2(2)- Draglb%dY_Cf- Vector of partial derivatives, behavior%Y2(3)- Lift-to-drag rationone%dY_h- Vector of partial derivatives,
behavior%Y21- Liftlb%dY_h- Vector of partial derivatives, behavior%Y23- Draglb%variables w.r.t altitudevary%Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumptionl/hr%dY_lamda- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y34- Specific fuel consumptionl/hr%dY_Sref- Vector of partial derivatives, behavior%Y34- Specific fuel consumptionl/hr%dY_T- Vector of partial derivatives, behavior%Y34- Specific fuel cons | % | , , | | p.f. | | dg3 YE3 | | J | | %Y14(2)- Fuel weightlb%dY_AR- Vector of partial derivatives, behavior%Y2(1)- Liftlb%dY_Cf- Vector of partial derivatives, behavior%Y2(2)- Draglb%dY_Cf- Vector of partial derivatives, behavior%Y2(3)- Lift-to-drag rationone%dY_h- Vector of partial derivatives, behavior%Y21- Liftlb%dY_h- Vector of partial derivatives, behavior%Y23- Draglb%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumptionl/hr%dY_lamda- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_T- Vector of partial derivatives, behavior%X1(1)- Wingbox x-sectional area as poly. funct.p.f.%dY_T- Vector of partial derivatives, behavior< | | | | _ | | <i>e</i> – | | vary | | %Y2(1)- Liftlb%variables w.r.t aspect ratiovary%Y2(2)- Draglb%dY_Cf- Vector of partial derivatives, behavior%Y2(3)- Lift-to-drag rationone%dY_h- Vector of partial derivatives, behavior%Y21- Liftlb%dY_h- Vector of partial derivatives, behavior%Y23- Draglb%wariables w.r.t altitudevary%Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%dY_lamda- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_Sref- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y44- Objective function output from BB4NM%dY_T- Vector of partial derivatives, behavior%X1(1)- Wingbox x-sectional area as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior% <t< td=""><td></td><td>* *</td><td>•</td><td></td><td></td><td>dY AR</td><td><u> </u></td><td>J</td></t<> | | * * | • | | | dY AR | <u> </u> | J | | %Y2(2)- Draglb%dY_Cf- Vector of partial derivatives, behavior%Y2(3)- Lift-to-drag rationone%variables w.r.t skin friction coefficientvary%Y21- Liftlb%dY_h- Vector of partial derivatives, behavior%Y23- Draglb%variables w.r.t altitudevary%Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%variables w.r.t wing sweepvary%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_Sref- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior <td></td> <td>* /</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>varv</td> | | * / | | | | _ | | varv | | %Y2(3)- Lift-to-drag rationone%variables w.r.t skin friction coefficientvary%Y21- Liftlb%dY_h- Vector of partial derivatives, behavior%Y23- Draglb%dY_Lamda- Vector of partial derivatives, behavior%Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%dY_lamda- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_Sref- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y34- Objective function output from BB4NM%dY_T- Vector of partial derivatives, behavior%X1(1)- Wingbox x-sectional area as poly. funct.p.f.%dY_T- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone% | | , , | - Drag | lb | | dY Cf | * | J | | %Y21- Liftlb%dY_h- Vector of partial derivatives, behavior%Y23- Draglb%wariables w.r.t altitudevary%Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%dY_lamda- Vector of partial derivatives, behavior%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%dY_T- Vector of partial derivatives, behavior%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%dY_tc- Vector of | | | <u>c</u> | | | _ | | vary | | %Y23- Draglb%variables w.r.t altitudevary%Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%variables w.r.t wing sweepvary%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_Sref- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%dY_tc- Vector of partial derivatives, behavior | | , , | | lb | | dY h | | J | | %Y24- Lift-to-drag rationone%dY_Lamda- Vector of partial derivatives, behavior%Y3(1)- Specific fuel consumption1/hr%variables w.r.t wing sweepvary%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%dY_tc- Vector of partial derivatives, behavior | | | | | | _ | | vary | | %Y3(1)- Specific fuel consumption1/hr%variables w.r.t wing sweepvary%Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%dY_M- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%dY_Sref- Vector of partial derivatives, behavior%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%dY_tc- Vector of partial derivatives, behavior | | Y24 | <u>c</u> | none | | dY Lamda | | J | | %Y3(2)- Engine weightlb%dY_lamda- Vector of partial derivatives, behavior%Y3(3)- Engine scale factornone%- Vector of partial derivatives, behavior%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%variables w.r.t Mach numbervary%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%dY_T- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%dY_tc- Vector of partial derivatives, behavior | | | | 1/hr | | _ | • | varv
| | %Y3(3)- Engine scale factornone%variables w.r.t taper ratiovary%Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%variables w.r.t Mach numbervary%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%dY_T- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%dY_tc- Vector of partial derivatives, behavior | | , , | | | | dY lamda | | J | | %Y31- Engine weightlb%dY_M- Vector of partial derivatives, behavior%Y32- Engine scale factornone%variables w.r.t Mach numbervary%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%dY_tc- Vector of partial derivatives, behavior | | | 0 0 | none | | _ | | varv | | %Y32- Engine scale factornone%variables w.r.t Mach numbervary%Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%vary%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%dY_tc- Vector of partial derivatives, behavior | | | | lb | | dY M | | J | | %Y34- Specific fuel consumption1/hr%dY_Sref- Vector of partial derivatives, behavior%Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%variables w.r.t throttle settingvary%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%variables w.r.t thickness/chord ratiovary | | | 0 0 | none | | _ | | varv | | %Y4- Objective function output from BB4NM%variables w.r.t wing surface areavary%X1(1)- Wing taper rationone%dY_T- Vector of partial derivatives, behavior%X1(2)- Wingbox x-sectional area as poly. funct.p.f.%variables w.r.t throttle settingvary%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%variables w.r.t thickness/chord ratiovary | | | | | | dY Sref | | J | | % X1(1) - Wing taper ratio none % dY_T - Vector of partial derivatives, behavior % X1(2) - Wingbox x-sectional area as poly. funct. p.f. % variables w.r.t throttle setting vary % X2 - Skin friction coefficient as poly. funct. p.f. % dY_tc - Vector of partial derivatives, behavior % X3 - Throttle setting none % variables w.r.t thickness/chord ratio vary | | | | | | <u> </u> | | varv | | %X1(2)- Wingbox x-sectional area as poly. funct.p.f.%variables w.r.t throttle settingvary%X2- Skin friction coefficient as poly. funct.p.f.%dY_tc- Vector of partial derivatives, behavior%X3- Throttle settingnone%variables w.r.t thickness/chord ratiovary | | | - | | | dY T | | | | % X2 - Skin friction coefficient as poly. funct. p.f. % dY_tc - Vector of partial derivatives, behavior variables w.r.t thickness/chord ratio vary | | | | | | - <u>-</u> | | varv | | % X3 - Throttle setting none % variables w.r.t thickness/chord ratio vary | | | • | | | dY tc | <u> </u> | , , | | | | | | _ | | | | vary | | | % | Z(1) | - Thickness/chord ratio | none | % | dY_x | - Vector of partial derivatives, behavior | , | | % | | variables w.r.t wingbox x-section vary | | |---|--------------|--|--| | % | | | func- | | % | Subfunctions | | $tion[A,dY_lambda,dY_x,dY_Cf,dY_T,dY_tc,dY_h,dY_M,dY_AR,dY_Lambda,dY_S]$ | | % | fin_diff_A12 | -Calculates the A12 submatrix of GSE eqns. | ref,dg1_Z,dg2_Z,dg3_Z,dg1_YE1,dg2_YE2,dg3_YE3]=FIN_DIFF(Z,Y1,Y2,Y3,Y4, | | % | fin_diff_A13 | -Calculates the A13 submatrix of GSE eqns. | Y12,Y14,Y21,Y23,Y24,Y31,Y32,Y34,X1,X2,X3,G1,G2,G3,C,Twist_initial,x_initial, | | % | fin_diff_A21 | -Calculates the A21 submatrix of GSE eqns. | $L_initial, R_initial, ESF_initial, Cf_initial, Lift_initial, tc_initial, M_initial, h_initial, T_initial, T_$ | | % | fin_diff_A23 | -Calculates the A23 submatrix of GSE eqns. | itial) | | % | fin_diff_A32 | -Calculates the A32 submatrix of GSE eqns. | | | % | fin_diff_A41 | -Calculates the A41 submatrix of GSE eqns. | %calculate Y partials% | | % | fin_diff_A42 | -Calculates the A42 submatrix of GSE eqns. | | | % | fin_diff_A43 | -Calculates the A43 submatrix of GSE eqns. | [A12]=fin_diff_A12(Z,Y1,Y21,Y31,X1,C,x_initial,L_initial,R_initial,Lift_initial,Twi | | % | fdG1_Y21 | -Calculates BB1 constraints w.r.t Y variables | st_initial,tc_initial); | | % | | coming into BB1 from BB2; derivative | [A13]=fin_diff_A13(Z,Y1,Y21,Y31,X1,C,x_initial,L_initial,R_initial,Lift_initial,Twi | | % | fdG1_Y31 | -Calculates BB1 constraints w.r.t Y variables | st_initial,tc_initial); | | % | | coming into BB1 from BB3; derivative | [A21]=fin_diff_A21(Z,Y2,Y12,Y32,X2,C,Twist_initial,ESF_initial,Cf_initial,tc_initial) | | % | fdG2_Y12 | -Calculates BB2 constraints w.r.t Y variables | al); | | % | | coming into BB2 from BB1; derivative | [A23]=fin_diff_A23(Z,Y2,Y12,Y32,X2,C,Twist_initial,ESF_initial,Cf_initial,tc_initial) | | % | fdG2_Y32 | -Calculates BB2 constraints w.r.t Y variables | al); | | % | | coming into BB2 from BB3; derivative | [A32]=fin_diff_A32(Z,Y3,Y23,X3,C,M_initial,h_initial,T_initial); | | % | fdG3_Y23 | -Calculates BB3 constraints w.r.t Y variables | [A41]=fin_diff_A41(Z,Y4,Y14,Y24,Y34); | | % | | coming into BB3 from BB2 | [A42]=fin_diff_A42(Z,Y4,Y14,Y24,Y34); | | % | fdY1_X1 | -Calculates Y1 output w.r.t. change in X variables | [A43]=fin_diff_A43(Z,Y4,Y14,Y24,Y34); | | % | | for BB1 | | | % | fdY2_X2 | -Calculates Y2 output w.r.t. change in X variables | [dg1_Y21]=fdG1_Y21(Z,Y1,Y21,Y31,X1,G1,C,x_initial,L_initial,R_initial,Lift_initi | | % | | for BB2 | al,Twist_initial,tc_initial); | | % | fdY3_X3 | -Calculates Y3 output w.r.t. change in X variables | [dg1_Y31]=fdG1_Y31(Z,Y1,Y21,Y31,X1,G1,C,x_initial,L_initial,R_initial,Lift_initi | | % | | for BB3 | al,Twist_initial,tc_initial); | | % | fdY1_Z | -Calculates Y1 output w.r.t. change in Z variables | $dg1_YE1 = [dg1_Y21 dg1_Y31];$ | | % | fdY2_Z | -Calculates Y2 output w.r.t. change in Z variables | [dg2_Y12]=fdG2_Y12(Z,Y2,Y12,Y32,X2,G2,C,Twist_initial,ESF_initial,Cf_initial,t | | % | fdY3_Z | -Calculates Y3 output w.r.t. change in Z variables | c_initial); | | % | fdY4_Z | -Calculates Y4 output w.r.t. change in Z variables | [dg2_Y32]=fdG2_Y32(Z,Y2,Y12,Y32,X2,G2,C,Twist_initial,ESF_initial,Cf_initial,t | | % | fdG1_Z | -Calculates BB1 contraint output w.r.t. change in | c_initial); | | % | | Z variables | $dg2_YE2 = [dg2_Y12 dg2_Y32];$ | | % | fdG2_Z | -Calculates BB2 contraint output w.r.t. change in | [dg3_Y23]=fdG3_Y23(Z,Y3,Y23,X3,G3,C,M_initial,h_initial,T_initial); | | % | | Z variables | $dg3_YE3 = [dg3_Y23];$ | | % | fdG3_Z | -Calculates BB3 contraint output w.r.t. change in | | | % | | Z variables | %construct A matrix% | | % | | | | | % | | | A = [| ``` 1 0 0 -A12(1,1) 0 0 0 -A13(1,1)
0 0 0 1 0 -A12(2,1) 0 0 0 -A13(2,1) 0 0 0 0 1 -A12(3,1) 0 0 0 -A13(3,1) 0 0 -A21(1,1) 0 -A21(1,2) 1 0 0 0 0 -A23(1,1) 0 -A21(2,1) 0 -A21(2,2) 0 1 0 0 0 -A23(2,1) 0 -A21(3,1) 0 -A21(3,2) 0 0 1 0 0 -A23(3,1) 0 0 0 0 0 -A32(1,1) 0 1 0 0 0 0 0 0 0 -A32(2,1) 0 0 1 0 0 0 0 0 0 -A32(3,1) 0 0 0 1 0 -A41(1,1) -A41(1,2) 0 0 0 -A42(1,1) -A43(1,1) 0 0 1]; %----- alculate X partials-----% [dY1_X1_1,dY1_X1_2]=fdY1_X1(Z,Y1,Y21,Y31,X1,C,x_initial,L_initial,R_initial, Lift initial, Twist initial, tc initial); [dY2 X2]=fdY2 X2(Z,Y2,Y12,Y32,X2,C,Twist initial,ESF initial,Cf initial,tc initi al): [dY3 X3]=fdY3 X3(Z,Y3,Y23,X3,C,M initial,h initial,T initial); %----- alculate Z partials-----% [dY1 Z1,dY1 Z4,dY1 Z5,dY1 Z6]=fdY1 Z(Z,Y1,Y21,Y31,X1,C,x initial,L initial, R initial, Lift initial, Twist initial, tc initial); [dY2 Z1,dY2 Z2,dY2 Z3,dY2 Z4,dY2 Z5,dY2 Z6]=fdY2 Z(Z,Y2,Y12,Y32,X2,C, Twist_initial,ESF_initial,Cf_initial,tc_initial); [dY3 Z2,dY3 Z3]=fdY3 Z(Z,Y3,Y23,X3,C,M initial,h initial,T initial); [dY4_Z2,dY4_Z3]=fdY4_Z(Z,Y4,Y14,Y24,Y34); [dg1 Z]=fdG1 Z(Z,Y1,Y21,Y31,X1,G1,C,x initial,L initial,R initial,Lift initial,Tw ist initial,tc initial); [dg2 Z]=fdG2 Z(Z,Y2,Y12,Y32,X2,G2,C,Twist initial,ESF initial,Cf initial,tc initi [dg3 Z]=fdG3 Z(Z,Y3,Y23,X3,G3,C,M initial,h initial,T initial); %-----% dY \ lambda = [dY1 \ X1 \ 1; 0; 0; 0; 0; 0; 0; 0; 0]; dY x = [dY1 X1 2; 0; 0; 0; 0; 0; 0; 0; 0]; dY Cf = [0; 0; 0; dY2 X2; 0; 0; 0; 0]; ``` | REPORT | DOCUMENTATION PA | AGE | Form Approved
OMB No. 0704-0188 | | | | |--|---|---|---|--|--|--| | Public reporting burden for this collection of i
gathering and maintaining the data needed,
collection of information, including suggestio
Davis Highway, Suite 1204, Arlington, VA 22 | nformation is estimated to average 1 hour per i
and completing and reviewing the collection of
ns for reducing this burden, to Washington Hea
202-4302, and to the Office of Management ar | response, including the time for revie
information. Send comments regard
adquarters Services, Directorate for I
ad Budget, Paperwork Reduction Pro | wing instructions, searching existing data sources,
ing this burden estimate or any other aspect of this
nformation Operations and Reports, 1215 Jefferson
ject (0704-0188), Washington, DC 20503. | | | | | 1. AGENCY USE ONLY (Leave blan | | | PE AND DATES COVERED | | | | | 4. TITLE AND SUBTITLE | August 1998 | 1 ecnnical 1 | Memorandum 5. FUNDING NUMBERS | | | | | Bi-Level Integrated Syste | em Synthesis (BLISS) | | | | | | | | • | | 509-10-31-03 | | | | | 6. AUTHOR(S) Jaroslaw Sobieszczanski Sandusky, Jr. | -Sobieski, Jeremy S. Agte, an | d Robert R. | | | | | | 7. PERFORMING ORGANIZATION | NAME(S) AND ADDRESS(ES) | | 8. PERFORMING ORGANIZATION REPORT NUMBER | | | | | NASA Langley Research
Hampton, VA 23681-219 | | | L-17778 | | | | | 9. SPONSORING/MONITORING AG | SENCY NAME(S) AND ADDRESS(ES) | | 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER | | | | | National Aeronautics and | | | NASA/TM-1998-208715 | | | | | Washington, DC 20546- | 0001 | | | | | | | Research Center; Agte: Force; Sandusky: Profes 12a. DISTRIBUTION/AVAILABILITY | Graduate Research Scholar Assor, The George Washington | ssistant, The George W | arch Coordinator, NASA Langley ashington University, LT, U.S. Air 12b. DISTRIBUTION CODE | | | | | Unclassified-Unlimited Subject Category 05 Availability: NASA CA | Distribution: Standard
SI (301) 621-0390 | 1 | | | | | | BLISS is a method for optimization of engineering systems by decomposition. It separates the system level optimization, having a relatively small number of design variables, from the potentially numerous subsystem optimizations that may each have a large number of local design variables. The subsystem optimizations are autonomous and may be conducted concurrently. Subsystem and system optimizations alternate, linked by sensitivity data, producing a design improvement in each iteration. Starting from a best guess initial design, the method improves that design in iterative cycles, each cycle comprised of two steps. In step one, the system level variables are frozen and the improvement is achieved by separate, concurrent, and autonomous optimizations in the local variable subdomains. In step two, further improvement is sought in the space of the system level variables. Optimum sensitivity data link the second step to the first. The method prototype was implemented using MATLAB and iSIGHT programming software and tested on a simplified, conceptual level supersonic business jet design, and a detailed design of an electronic device. Satisfactory convergence and favorable agreement with the benchmark results were observed. Modularity of the method is intended to fit the human organization and map well on the computing technology of concurrent processing. 14. SUBJECT TERMS 15. NUMBER OF PAGES | | | | | | | | | mization by Decomposition; | Engineering System De | | | | | | 17. SECURITY CLASSIFICATION OF REPORT Unclassified | 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified | 19. SECURITY CLASSIFIC
OF ABSTRACT
Unclassified | ATION 20. LIMITATION OF ABSTRACT | | | |